


O D)

Customer Order No. NSP-INST-REF-M
Publication Number 420010099-001B
June 1984

Series 32000™

Series 32000
Instruction Set Reference Manual

©1984 National Semiconductor Corporation
2900 semiconductor Drive
Santa Clara, California 95051



REVISION

A

RELEASE DATE

08/83

06/84

REVISION RECORD

SUMMARY OF CHANGES

First Release.
Series 32000 Instruction Set Reference

Manual.
Publication No. 420010099-001

This manual is being reissued to reflect

the Series 32000 name change. There are
also minor technical changes.

ii

C/

()

()

()

(D



(o

PREFACE

The Series 32000™ family is the latest entry into the high performance microproc-
essor marketplace. The family is carefully designed and optimized to operate in
environments which demand large-scale computing capabilities, but require only
microprocessor size and price. A great deal of concern has been given to every
aspect of the architecture to ensure high performance while not compromising
other considerations, such as memory management or code density.

National Semiconductor takes great pride in introducing the Series 32000 family
of microprocessors and peripheral components, which offers a total system
solution to a wide variety of new microprocessor applications.

The following National Semiconductor publications provide related study/reference
material for using the Series 32000 family.

Series 32000 NSX Cross-—Support Utilities (Pub. No. 420306617-002)
Reference Manual

Series 32000 Pascal Language and Compiler (Pub. No. 420306618-002)
Reference Manual

Series 32000 Cross-Assembler Reference Manual (Pub. No. 420306619-002)

Series 32000 ISE16: NS32016 and NS32008 In-System (Pub. No. 420306675-002)
Emulators User's Manual

Series 32000 Symbolic Debugger Reference Manual (Pub. No. 420306676-002)

Series 32000 Run-Time Support Library Reference Manual (Pub. No. 420308038-002)

Series 32000 Floating-Point Support Library (Pub. No. 420308220-002)
Reference Manual

Series 32000 Development Board Monitor (Pub. No. 420308221-=002)
Reference Manual

Series 32000 NSX Operations Manual (Pub. No. 424009011-002)

Series 32000 DB32000 Development Board User's Manual (Pub. No. 420010144-001)

Series 32000 TDS: Tiny Development System (Pub. No. 420306440-001)

Series 32000 DB32016 Development Board User's Manual (Pub. No. 420310111-001)

Series 32000 EXEC: ROMable Real-Time Multitasking (Pub. No. 420010206=001)

EXECUTIVE Reference Manual
Series 32000 GENIX Cross-Support Software Programmer's

Manual

Volume 1 (Pub. No. 424010106-001)

Volume 2 (Pub. No. 424010106-002)
Series 32000 GENIX Programmer's Manual

Volume 1 (Pub. No. 424308225-001)

Volume 2 (Pub. No. 424308225-002)
Series 32000 GENIX Debugging Reference Manuals

GENIX ISE16: NS32008 and NS32016 (Pub. No. 420308165-001)

In-System Emulators

GENIX Symbolic Debugger (Pub. No. 424010149-001)
Series 32000 SYS32 System Manual » (Pub. No. 420308225-001)

Series 32000 and ISE16 are trademarks of National Semiconductor Corporation.
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The information contained in this manual is for reference only and is subject to
change without notice. /';>

L

No part of this document may be reproduced in any form or by any means without
the prior written consent of National Semiconductor Corporation.
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Chapter 1

INTRODUCTION

This document is a revised definition of the Series 32000 instruction set. It
provides more specific information on architectural details, and also incor-
porates further information on compatibility issues.

This is not a full architectural description, and is intended to supplement and
update other documentation already in print. Specific areas not included here
are:

e Material which is primarily tutorial in nature.
® Details of memory management. See instead the NS32082 MMU data sheet.

The term "undefined" is used frequently as the outcome of an illegal instruction
form. An outcome which is architecturally undefined is not guaranteed to remain
the same under all conditions, in all component revisions, or in future expanded
implementations of this architecture. Many of these illegal options may "work"
in the current implementation, but they are nevertheless considered undefined by
NSC, and should always be avoided. Illegal instruction forms, when executed in
User mode, are guaranteed not to bypass any of the protection mechanisms imple-
mented in the Series 32000 family. ‘

The manual is divided as follows:
1. INTRODUCTION

2. PROGRAMMING MODEL
Definitions of the Series 32000 register set and other resources
visible to the programmer.

3. INSTRUCTIONS AND DATA TYPES
A discussion of the instruction set by functional groups, including
definitions of associated data types and exceptional conditions.

4. INSTRUCTION OPTIONS AND CONSTRUCTION
Definitions of the Series 32000 addressing modes and the construction
of instructions in assembly language and binary.

5. INSTRUCTION SET
Individual definitions of the Series 32000 instructions, organized
alphabetically by mnemonic.

6. EXCEPTION PROCESSING
Definitions of the Series 32000 interrupt and trap structure, including
the response to a Reset.



Appendices:

A.
B.

LIST OF INSTRUCTIONS BY FUNCTIONAL GROUP

INSTRUCTION EXECUTION TIMING
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Chapter 2

PROGRAMMING MODEL

This chapter defines the programming model (resources visible to the programmer)
presented by the Series 32000 architecture. More specifically, this chapter
presents the Series 32000 register set, memory organization, and the functions of
dedicated memory areas used by Series 32000 hardware. Also presented here is the
mechanism used to protect privileged portions of the programming model.

This chapter is organized as follows:

Topic Section
General Registers 2.1
Dedicated Registers 2.2
Configuration Register 2.3
Floating-Point Registers 2.4
Memory Management Registers 2.5
Memory Organization 2.6
Dedicéted Memory Areas 2.7
Privilege States and Protection 2.8



2.1 General Registers

There are eight 32-bit General-Purpose registers, named RO through R7 (see
Figure 2-1). The contents of any General-Purpose register can be used as:

1e Data, using the Register addressing modes (Section 4.4.1).

2. A Dbase pointer, wusing the Register Relative addressing modes
(section 4.4.2).

3. An index value, using the Scaled Indexing modifier in an addressing
mode (Section 4.4.9).

Data held within a General-Purpose register may be treated as an 8-bit, 16-bit,
or 32-bit value. When an instruction operates on data of less than 32 bits, the
value used is the low—-order portion of the register. The remaining portion of
the register is neither used nor affected.

For extended arithmetic (the MEIi and DEIi instructions), the General-Purpose
registers are combined to form even/odd register pairs: RO/R1, R2/R3, R4/R5, and
R6/R7. See Section 4.4.1 for details of this use.

2.2 Dedicated Registers

The Dedicated registers store memory addresses and general status information
(see Figure 2-1). The eight Dedicated registers are:

Program Counter (PC)

Static Base Register (SB)

User Stack Pointer (SP1)
Interrupt Stack Pointer (SPO)
Frame Pointer (FP)

Interrupt Base Register (INTBASE)
Module Register (MOD)

Processor Status Register (PSR)

The PC, SB, SP1, SP0, FP, and INTBASE registers each hold 32-bit memory addres-
ses. The MOD and PSR registers are each 16 bits long. The MOD register contains
a memory address, and the PSR register contains status information. The addres-
ses contained in these registers are interpreted as virtual in memory-managed
systems.

Because the current implementation of the Series 32000 family uses only 24-bit
addresses, only the low-order 24 bits of the 32-bit registers are implemented.
The high-order eight bits are permanently zero for reasons of upward compati-
bility.

()
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A description of each Dedicated register follows.

PC

SP1

SPO

FP

INTBASE

The Program Counter is available as a Base register (using the
Program Memory addressing mode, Section 4.4.8). It contains the
memory address of the first byte of the instruction currently being
executed. The PC is incremented (to point to the next instruction)
only when the current instruction is completed. On occurrence of a
Reset (Chapter 6), the PC is set to zero, and the first instruction
is fetched from this address.

The User Stack Pointer points to the top of the User stack

(section 2.7.1). The SP1 register is selected for all stack
operations while the S bit in the Processor Status Register is set
to 1.

The Interrupt Stack Pointer points to the top of the Interrupt
Stack (Section 2.7.1). The Interrupt Stack is selected for all
stack operations while the S bit in the PSR is set to 0. It is
also automatically selected whenever an interrupt or trap occurs.
In memory-managed systems, SP0 must always contain a valid
Supervisor-Mode virtual address (see Section 2.7.1).

NOTE: The SP1 and SP0 registers are never referenced directly by a
program. Instead, the symbol "SP" is used, ‘meaning the
Stack Pointer which is currently selected. This SP register
is available as a base pointer using the Stack Memory and
Stack Memory Relative addressing modes (Sections 4.4.8
and 4.4.3). The Top of Stack addressing mode uses the SP
register in performing "push" and "pop" references to the
top of the stack (Section 4.4.7).

The Frame Pointer points to a dynamically-allocated data area
created at the beginning of a procedure (by the ENTER instruction).
This area is generally called the "activation record" for the
procedure, and contains its parameters, local variables, saved
registers, and return address. The FP register is available as a
base pointer using the Frame Memory and Frame Memory Relative
addressing modes (Sections 4.4.8 and 4.4.3).

The Interrupt Base register contains the base address of the
Interrupt Dispatch Table. This is a vector table which contains
the descriptors of the trap and interrupt service procedures. See
Chapter 6 for details of trap and interrupt handling. In
memory-managed systems, INTBASE must always contain a valid
Supervisor-Mode virtual address (see Section 2.7.4).

-
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The Module register points to the current module's Module Table
entry. The Module Table entry is a 16-byte block of memory
containing three pointers for the current module:

© SB (Static Base, a pointer to its static data area)
e LB (Link Base, a pointer to its Link Table)
e PB (Program Base, a pointer to the beginning of its code)

See Section 2.7.2.

The Static Base register contains the base address of data which
has been statically allocated (i.e. allocated once, before program
execution) to the current module. This address is a copy of the
SB pointer in the current Module Table entry. It is available for
use in the Static Memory and Static Memory Relative addressing
modes (Sections 4.4.8 and 4.4.3). The Static Base register is
automatically updated whenever control is transferred from one
module to another.



Supervisor Flags User Flags
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Figure 2-2 Processor Status Register
PSR, The Processor Status Register (Figure 2-2) contains 16 mode and
UPSR status flag bits, of which 10 bits are currently implemented. All

implemented PSR flags are readable and writable. The bit positions
marked "x" in Figure 2-2 are reserved for future use. They are not
currently implemented, and do not retain information written to
them. For upward compatibility reasons, no program should attempt
to change these bits, nor should any program assume that they are
always zero (even though they appear to be permanently zero in the
current implementation).

The least-significant byte of the PSR contains flags which are
always accessible. This byte 1is also called the UPSR, for

"User PSR".

The most~significant byte of the PSR contains the Supervisor flags.
Supervisor flags are accessible only by a program running in
Supervisor mode (see the discussion of the U bit which follows).
Any attempt by a User Mode program to load, store or modify this
byte causes the Illegal Operation trap, Trap (ILL), instead. See
Section 2.8 for further details of protection features.

Upon occurrence of an interrupt or trap, the PSR is pushed onto the
Interrupt Stack. Certain PSR bits are then automatically cleared
(as stated in their descriptions) to establish the proper modes of
operation for interrupt service. See Chapter 6 for further details
of interrupt and trap service.

NOTE: The PSR P bit is sometimes cleared before the PSR is pushed
onto the Interrupt Stack. See Chapter 6.

All implemented PSR flags are cleared to zero on occurrence of a
Reset (Chapter 6).
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User PSR Flags

Cc

is the Carry flag. The Carry flag signals a carry
condition during execution of an addition instruction or
a borrow condition during a subtraction instruction. If
a carry or borrow has occurred, the C bit is set to 1.
If no carry or borrow has occurred, the C bit is set to
0. See section 3.1 for definitions of carry and borrow
conditions.

is the Trace flag. This flag places a program in Trace
mode, allowing step-by-step inspection of the effects of
each instruction. While the T bit is set, the Trace
trap, Trap (TRC), occurs at the completion of each
instruction. The T bit interacts with the P bit to
ensure correct operation of Trace Mode regardless of any
interrupts or other traps which may also be occurring.
It is cleared on occurrence of any trap or interrupt.
See Chapter 6 for further details of this trap and of
trap service.

is the Low flag. The Low flag signals the result of an
unsigned comparison between two integers. (All integer
comparison instructions perform both signed and unsigned
comparisons.) If the second operand of a comparison
instruction is less than the first, the L bit is set to
1. If the second operand is greater than or equal to
the first, the L bit is set to 0. The L flag is always
cleared by the floating-point comparison instruction
(CMPE) .



F is the F Flag. The F flag is a general condition flag,
used by various instructions to signal exceptional
conditions (e.g. integer overflow from addition or
subtraction), or to distinguish among outcomes (e.g.
what condition has caused a String instruction to
terminate) .

Z is the Zero flag. The Zero flag indicates the result of
comparing two integers or two floating-point values. If
they are equal, the Z bit is set to 1. If they are not
equal, the Z bit is set to 0.

N is the Negative flag. The Negative flag indicates the
result of a signed comparison between two integers or
two floating-point values.

NOTE: The integer comparison instructions, CMPi and
CMPQi, perform both signed and unsigned com-
parisons.

If the second operand is less than the first, the N bit
is set to 1. If the second operand is greater than or
equal to the first, the N bit is set to 0.

The N, Z, F, L and C bits constitute a "condition" which may be
used by the Conditional Branch (Bcond) and Save Condition Code
(Scondi) instructions. In addition, the F bit may be used to cause
a trap (by the FLAG instruction).

Supervisor PSR Flags

U is the User Mode flag. If the U bit is 1, the current
program is running in User mode, and may not use privi-
leged instructions or reference protected registers. If
the U bit is 0, the current program is running in Super-
visor mode, and is not restricted. In memory-managed
systems, address translation and memory protection
features may also be affected by the state of this bit.
The U bit is automatically cleared on occurrence of any
interrupt or trap. See Section 2.8 for further details
of protection features.

S is the Stack flag. The S bit selects which of the two
stack pointers is to be used for stack operations. If
the S bit is 1, the User Stack Pointer (SP1) is
selected. If the S bit is 0, the Interrupt Stack
Pointer (SP0) is selected. The S bit is automatically
cleared on occurrence of a trap or interrupt.

)
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is the Trace Trap Pending flag. The P bit interacts
with the T bit to ensure correct trace results in
programs which are being interrupted or trapped. It is
automatically cleared on occurrence of any trap or
interrupt. The P bit in the PSR image which is pushed
on occurrence of an interrupt or trap may also be
cleared, depending on the trap or interrupt. See
Chapter 6 for further details of Trace mode.

is the Interrupt Enable flag. If the I bit is 1, both
Maskable and Non-Maskable interrupts are accepted. If
the I bit is 0, only Non-Maskable interrupts are
accepted. The I bit is automatically cleared on occur-
rence of an interrupt or the Abort trap, Trap (ABT). No
other traps affect this bit, and this bit does not dis-
able traps when clear. Interrupts are described in
Chapter 6.



2.3 Configuration Register (CFG)

-~
The Configuration register is used to enable or disable certain Series 32000 ‘ <\/)
features which are currently optional. The only operation performed on this
register is to load it using the SETCFG instruction, which is intended to be
executed only after a Reset to declare the system's configuration.

The CFG register is four bits in length and has the form

o pm et
tc!M!F! I

!
.
+. 4. 4
T T T

-}. .

where the bits correspond to features as given below.

)

I Interrupt vectoring. This bit declares whether hardware support is
available for direct vectoring of maskable interrupts. If the I bit is (ft)
set, service of a maskable interrupt includes reading an 8-bit value —
which selects an Interrupt Dispatch Table entry to use in locating the (:)

interrupt service procedure (see Section 2.7.4). This 8-bit value is
supplied by an NS32202 Interrupt Control Unit. If the I bit is not
set, maskable interrupts are not vectored, and use by default the first
entry (NVI) of the Interrupt Dispatch Table, requiring no hardware
support.

F Floating-Point instruction set. If this bit is set, the Floating-Point <\/>
instruction set (Section 3.3) is enabled, and an attached NS32081
Floating-Point Unit will be used to execute these instructions. If the
F bit is not set, all Floating-Point instructions generate Trap (UND)
instead. (The trap mechanism employed by the Series 32000 architecture
allows software to intercept this trap and fully emulate the functions
of the NS32081.)

~
M Memory Management instruction set. If this bit is set, the IMR, SMR, (\;)
RDVAL and WRVAL instructions (Section 3.12) are enabled, and an
attached NS32082 Memory Management Unit will be used to execute them.
If the M bit is not set, these instructions generate Trap (UND)
instead. (Note: the Memory Management instructions MOVSUi and MOVUSi ( )
are not affected by this bit, and are always available.)

C Custom instruction set. If this bit is set, the Custom instruction set
(section 3.13) is enabled, and will use attached custom hardware

(unique to a given system). If it is not set, all Custom instructions
generate Trap (UND) instead.

)
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2.4 Floating-Point Registers

Floating-Point registers are present in systems supporting the Floating-Point
instruction set (either by using the NS32081 Floating-Point Unit or by software
emulation) . See Figure 2-1. There are eight Floating-Point Data registers
(FO-F7) and one Floating-Point Status register (FSR).

2.4.1 Floating-Point Data Registers

The Floating-Point Data registers provide a high-speed workspace for
floating-point operations. These registers are named F0 through F7, and are 32
bits in 1length. They are referenced whenever the Register addressing mode
(section 4.4.1) is used in a floating-point instruction to specify the location
of a floating-point operand. Floating-point operands are located in memory or in
Floating-Point Data registers, and integer operands are located in memory or in
General-Purpose registers.

The Floating-Point Data registers may be used individually to hold 32-bit
single-precision floating-point numbers, or they may be used in even/odd pairs
(r0/F1, F2/F3, F4/F5, F6/F7) to hold 64-bit double-precision floating=-point
numbers. When a double-precision operand is held in a register pair, the even
register holds the low-order half of the number, and the odd register holds the
high-order half. A register pair is specified using the name of its even
register.

2-11



2.4.2 Floating-Point Status Register (FSR)

The Floating-Point Status register (FSR) selects operating modes and records any
exceptional conditions encountered during execution of a floating-point instruc-
tion. Figure 2-3 shows the format of the FSR.

! 16 ! 7 ! 2 r1T 111t 3 !
o ceam———— + + et ST T e e +
! (reserved) ! SWF ! RM I!IF !IEN!UF !UEN! T T !
! - -1 ————————————— I P P B !
31 16 15 9 8 7 6 5 4 3 2 1 0

Figure 2-3 Floating-Point Status Register

Bits 9 through 31 of the FSR are reserved. The SWF field (bits 9 through 15) is
currently reserved for NSC software use (floating-point extension software).
Information written to this field is retained, but does not affect any hardware
operations. The remaining bits (16 through 31) are not implemented, and do not
retain information written to them. For upward compatibility reasons, no program
should attempt to change either reserved field, nor should any program assume
that their contents are always zero (even though bits 16-31 appear to be
permanently zero in the current implementation). To change the contents of the
FSR, the following procedure should always be followed:

1. Use the SFSR instruction to store the FSR in a temporary location.
2. Change the desired fields in this temporary copy.

3. Use the LFSR instruction to load the temporary copy into the FSR.

v,
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FSR Mode Fields

The FSR mode fields are set by the programmer to establish modes of operation for
floating~point instructions. The mode fields are encoded as follows.

RM

UEN

IEN

Rounding Mode: bits 7 and 8. This field selects the rounding method to be
used whenever a floating-point result cannot be exactly represented in the
format of the destination operand. The rounding modes are:

00 Round to nearest value. The value which is nearest to the exact result
is selected. If the result is exactly halfway between the two nearest
values, the even value (LSB = 0) is delivered to the destination.

01 Round toward =zero. The nearest value whose absolute value is 1less
than, or equal to, the exact result is delivered to the destination.

10 Round toward positive infinity. The nearest value which is greater
than, or equal to, the exact result is delivered to the destination.

11 Round toward negative infinity. The nearest value which is less than,
or equal to, the exact result is delivered to the destination.

Underflow Trap Enable: bit 3. If this bit is set, Trap (FPU) occurs
whenever an underflow condition is encountered. See Section 3.3.7 for the
definition of floating-point underflow. If it is not set, any underflow
condition returns a result of positive zero (Section 3.3.3), and no trap
occurs.

Inexact Result Trap Enable: bit 5. If this bit is set, Trap (FPU) occurs
whenever the result of a floating-point instruction is not exact. TIf it is
not set, the result is rounded according to the selected rounding mode, and
no trap occurs.



FSR Status Fields

The FSR status fields record exceptional conditions encountered during the
execution of a floating-point instruction. The meanings of the FSR status bits

are as follows:

TT

UF

IF

Trap Type: bits 0-2. This 3-bit field records any exceptional condition
detected by a floating-point instruction. These conditions are defined in
Section 3.3.7. They are reported as:

000 No exceptional condition occurred.
001 Underflow

010 overflow

011 Division by Zero

100 Illegal Instruction

101 Invalid Operation

110 Inexact Result

111 (Reserved for future use.)

The TT field is loaded with zero whenever any floating-point instruction
except LFSR or SFSR completes without encountering an exceptional condition.
It is also set to zero by a Reset (Chapter 6) or by writing zero into it
with the Load FSR (LFSR) instruction. Underflow and Inexact Result are
always reported in the TT field, regardless of the settings of the UEN and
IEN bits.

Underflow Flag: bit 4. This bit is set whenever an underflow condition is
detected. See Section 3.3.7 for the definition of floating-point underflow.
The function of the UF bit is not affected by the state of the UEN bit. The
UF bit is cleared only by writing a zero into it with the LFSR instruction
or by a Reset (Chapter 6).

Inexact Result Flag: Bit 6. This bit is set whenever an Inexact Result
condition is detected, and no other errors have occurred. See Section 3.3.7
for the definition of this condition. It is cleared only by writing a zero
into it with the LFSR instruction or by a Reset (Chapter 6).

S~
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2.5 Memory Management Registers

Memory Management registers are present in systems incorporating the Series
32000 memory management option. These registers are currently implemented in the
NS32082 Memory Management Unit and are made available by setting the M bit in the
CFG register (Section 2.3). There are ten 32-bit Memory Management registers
(Figure 2-1):

MSR Memory Management Status Register
PTBO, PTB1 Page Table Base Registers

EIA Error/Invalidate Address Register
BPRO, BPR1 Breakpoint Registers

BCNT Breakpoint Count Register

PF0, PF1 Program Flow Registers

sC Sequential Count Register

The four registers MSR, PTBO, PTB1 and EIA provide status and control functions
for implementing memory management (mapping and protection) functions.

The three registers BPRO, BPR1 and BCNT implement hardware breakpointing on read,
write and/or execute accesses to specified addresses.

The three registers PF0, PF1 and SC provide the capability of tracing the flow of
a program backward from the point of a breakpoint or error.



The Memory Management registers are each 32 bits in length. The following
describes briefly the function of each register.

MSR

PTBO and PTB1

ETA

BPRO and BPR1

BCNT

PF0 and PF1

sC

contains the memory management status and control flags.

support virtual memory and address translation. These
registers contain the base addresses of the Level 1 Page
Tables.

supports virtual memory and address translation. When
read, this register contains the virtual address that
caused the most recent translation error. When written
to, this register causes the removal of an invalid Page
Table entry from the Translation Buffer.

support program debugging. These registers contain the
breakpoint addresses and the breakpoint conditions. The
processor breaks program execution when these addresses
and conditions are met.

supports program debugging. This register allows a
breakpoint address to be ignored for a specified number
of times.

support program debugging. These registers contain the
addresses of the two most recent nonsequentially fetched
instructions.

supports program debugging. This register contains two
16-bit fields:

SC1, containing the number of sequential instructions
executed Dbetween the 1last two nonsequentially
fetched instructions, and

SCO0, containing the number of sequential instructions
executed between the last nonsequentially fetched
instruction and the point where program flow tracing
was terminated.

®,
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2.6 Memory Organization

The Series 32000 architecture supports a memory addressing space of four
gigabytes (corresponding to a 32-bit address) of which the lower 16 megabytes
(24-bit address) is currently implemented.

2.6.1 Addressing

A memory address is a 32-bit unsigned integer. It uniquely identifies an 8-bit
location (a byte) within the memory space. In the current implementation only
the least-significant 24 bits of an address are used, interpreted as a 24-bit
unsigned number. In decimal, the resulting 24-bit addressing range is 0 through
16,777,215.

NOTES: 1. Addresses outside the above range, including negative addresses, are
undefined because their interpretations will differ between systems
implementing different maximum addressing spaces. Do not make use
of "wrap-around" features of any implementation for generating
addresses.

2. Except where otherwise indicated, all addresses and memory spaces
given in this manual are virtual in memory-managed systems, and can
be mapped to any "physical" (or "real") memory page. In the current
implementation, a separate 16-Mbyte memory space can be made
available to each user program, regardless of the size of physical
memory.

2.6.2 Memory Operand Formats

The basic storage unit is the byte. A byte holds eight bits of data and has the
following form: ;

! A

4= —_—

!
!
[ e e E e e |
7 0

Byte at Address A

Bit positions are numbered from 0 to 7. Bit 0 is the least-significant bit;
bit 7 is the most-significant bit.



A 16-bit value is called a word. It is held in memory as a pair of contiguous
bytes.

! A+1 ! A !
o U +
! ! !

el el et o e S
15 8 7 0

Word at Address A

The byte at the lower address is the least-significant byte; the byte at the
higher address is the most-significant byte. A word has the same address as its
least-significant byte and may start at any address.

A 32-bit value is called a double-word. It is held in memory as four contiguous
bytes. A double-word can hold either a 32-bit integer or a single-precision
floating-point value.

! A+3 ! A+2 ! A+1 ! A !
+- +- - e - Fomm——————————— +
! ! ! ! !
S S ma Tt Bt e B el e et et ol o
31 24 23 16 15 8 7 0

Double-word at Address A

The least-significant byte of a double-word is stored at the lowest address. A
double-word has the same address as its least-significant byte and may start at
any address.

O
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A 64-bit value is called a quad-word. It is held in memory as eight contiguous
bytes. A gquad-word can hold a 64-bit integer or a double-precision floating-
point wvalue.

A+5 ! A+4 ! A+3 A+2 ! A+1

Quad-word at Address A

The least-significant byte of a quad-word is stored at the lowest address. A
quad-word has the same memory address as its least-significant byte and may start
at any address.

2.6.3 Data Alignment

With the sole exception of the Page Tables used for memory management, there are
no alignment restrictions in the Series 32000 architecture. Operands of any
length may start at any byte address.

For optimal throughput, however, it is usually desirable to align data. A method
for alignment which applies well to all memory bus size implementations (8, 16 or
32 bits) is to align operands on "integral" boundaries. By this method, words
are stored at even addresses, double-words at multiples of four, and quad-words
at multiples of eight.

2.7 Dedicated Memory Areas

A Series 32000-based system will make use of certain designated memory areas for
the following purposes:

® User and Interrupt Stacks

® Module Table

e Link Tables

® Interrupt Dispatch Table and Cascade Table
@ Input and Output



2.7.1 User and Interrupt Stacks

A stack is a block of memory used as a last-in/first-out (LIFO) buffer. The
contents of a Stack Pointer register specify an address within the block, and the
value at this address is considered to be at the top of the stack.

There are two stacks: a User Stack and an Interrupt Stack. The User Stack
Pointer (SP1) specifies the address of the top of the User Stack, and the Inter-
rupt Stack Pointer (SP0) specifies the address of the top of the Interrupt Stack.
At any time, one of these stacks is selected for stack operations (by the PSR S
bit, Section 2.2). The User stack is generally assigned to User-Mode programs,
although programs running in Supervisor Mode may also select it. The Interrupt
stack is identical in function to the User stack, except that it is always
selected on a trap or interrupt to receive the return information (return
address, MOD and PSR: see Chapter 6). An interrupt or trap service routine may
continue to use the Interrupt Stack, or it may re-select the User stack.

Stacks grow downward in memory; i.e., toward lower addresses. To pop a value,
the current Stack Pointer is incremented by the value's length in bytes after
reading it ("post-increment"). To push a value, the current Stack Pointer is
decremented by the value's length in bytes before writing it ("pre-decrement").
In either case, the Stack Pointer indicates the new top of the stack.

Data may be read from, or written to, the currently-selected stack at any time,
using the Top of Stack addressing mode (Section 4.4.7), which performs an auto-
matic push or pop, as appropriate. In addition, the current Stack Pointer may be
used as a base pointer in the Stack Memory and Stack Memory Relative addressing
modes (Sections 4.4.8 and 4.4.3). '

The current stack also receives return addresses and other context information
saved in the process of invoking a procedure. Examples of this use are the BSR
(Branch to Subroutine) instruction and the ENTER (Enter Procedure Context)
instruction. Instructions of this type always modify the Stack Pointer in multi-
ples of four, so that the stack may always be kept aligned on 32-bit boundaries
if desired for optimal throughput. ‘

NOTES: 1. Information popped from a stack should never be considered still
available in its original memory location after the popping instruc-
tion terminates, nor should any program ever store information in a
memory area which is available for stack expansion but is not within
the stack. These requirements are made for reasons of upward com-
patibility and compatibility between systems.

2. In memory-managed systems, the Interrupt stack must always be avail-
able in physical memory. On occurrence of an interrupt or trap, the
contents of the Interrupt Stack pointer are treated as a Supervisor-—
Mode virtual address.

2-20
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2.7.2 Module Table

The Series 32000 architecture supports software modules and modular programs
through a Module Table. This table contains one 16-byte entry (a module descrip-—
tor) for each module in the program. The MOD Register (Section 2.2) holds the
address of the Module Table entry for the currently-running module.

All Module Table entries need not be held in a single contiguous memory space,
but they must all be contained within the first 64K bytes of memory, due to the
fact that the MOD register holds only a 16-bit address. A Series 32000-based
system, therefore, can hold up to 4096 modules at a time (4096 modules per user,
in memory-managed systems).

A module descriptor contains four 32-bit pointers, of which the first three are
used in the current implementation. These pointers are found relative to the
contents of the MOD register as shown in Figure 2-4.

Address
131 0!
Fm——— - - +
MOD: ! Static Base !
Fomm——— - ———t
MOD + 4: ! Link Base !
MOD + 8: ! Program Base !
[ S t
MOD + 12: ! (Reserved for future use) !
F=—- +

Figure 2-4 Module Descriptor Format

The Static Base pointer contains the address of a memory area allocated to this
module for static data; i.e., data which is allocated only once, before execu-

tion. This pointer is loaded into the Static Base register whenever control is
transferred from one module to another.

The Link Base pointer contains the address of the Link Table assigned to this
module. See Section 2.7.3.

The Program Base pointer contains the address of the first byte of the code

section of this module. It is used by other modules (through their Link Tables)
to transfer control to specific procedures within this module.

2=-21



NOTES:

1‘

All Module Table entries must be entirely contained within the first
64K bytes of memory. This means that MOD register values of FFF1
through FFFF (Hex) are reserved.

In memory-managed systems, all module descriptors for interrupt or
trap service routines must always be in physical memory. The
contents of the three pointers are interpreted as Supervisor-Mode

virtual addresses.

2-22
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2.7.3 Link Tables

One Link Table is allocated to each module of a program. The Link Base pointer
of the current Module Table entry (Section 2.7.2) points to the Link Table for
the currently running module.

Each Link Table provides information which is used for:

1. Sharing variables between modules. Such variables are available to
other modules via the External addressing mode (Section 4.4.6).

2. Transferring control from one module to another. This is done directly
from the current Link Table via the CXP instruction.

A module's Link Table is constructed by a linker program based on requests made
by the module for external items. After allocating all of the modules comprising
a program, the linker then fills each Link Table with the information necessary
for communication between modules.

The format of a Link Table is given in Figure 2-5. A Link Table entry for an
external variable contains the 32-bit address of that variable. An entry for an
external procedure contains a 32-bit procedure descriptor consisting of two
16-bit fields: Module and Offset. The Module field holds the new MOD register
contents for the module containing the external procedure. The Offset field is
an unsigned value giving the position of the external procedure's entry point
relative to its module's Program Base pointer (Section 2.7.2).

Entry Type
131 16115 0!
Fm e —————————— - -+
0 Variable ! Absolute Address !
o -+
1 Variable ! Absolute Address !
Fmmm———— - +
2 Procedure ! Of fset ! Module !
Fmm——— - +

Figure 2-5 Sample Link Table
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2.7.4 Interrupt Dispatch Table and Cascade Table

The Series 32000 architecture supports handling of exceptions (traps and inter-
rupts) = through the Interrupt Dispatch Table. This table contains procedure
descriptors (Section 2.7.3) for locating the service procedures assigned to each
exception. The Interrupt Dispatch Table location is given by +the INTBASE
register.

The Interrupt Dispatch Table contains one 32-bit descriptor for each exception.
A Series 32000-based system can process up to 256 exceptions, depending on the
system configuration. A Cascade Table may also exist, appended before the
Dispatch Table.

For further details of interrupt and trap service, see Chapter 6.

NOTE: In memory-managed systems, the Interrupt Dispatch Table (and Cascade
Table, if present) must always reside in physical memory. The INTBASE
register contents are interpreted as a Supervisor-Mode virtual address.
The Module portion of each procedure descriptor is also interpreted as a
Supervisor-Mode virtual address.

2.7.5 Input and Output

Input and output ports are memory-mapped in Series 32000-based systems. That is,
all I/O devices are addressed as memory locations, and I/O operations are per-
formed by reading from, or writing to, an I/O device as if it were a byte, word,
or double-word of memory. There are no specific input and output instructions.

The hardware design of each individual system defines the number and type of I/O
devices as well as the addresses at which they are located. This is not defined
by the Series 32000 architecture. However, the current implementation encourages
two I/O assignments for interrupt handling, described below.

When a maskable interrupt occurs, an 8-bit vector number is read from address
OOFFFEOO (Hex). In memory-managed systems, this is a Supervisor-Mode wvirtual
address, and must always have a valid mapping. Depending on the interrupt con-
figuration mode (Vectored or Non-Vectored, Section 2.3), the vector value may not
actually be used, but the read operation always occurs.

When a Non-Maskable Interrupt (NMI) occurs, the processor reads one byte from
address OOFFFF00 (Hex). In memory-managed systems, this again is a Supervisor-
Mode virtual address, and must always have a valid mapping. The processor does
not use the data which was read.

Care should be taken in the system design to ensure that these read operations do
not trigger side-effects.

For further details of interrupt service, see Chapter 6 and the applicable CPU
data sheet.

2=-24
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2.8 Privilege States and Protection

The Series 32000 family implements two privilege states: User Mode and Super-
visor Mode.

The U flag in the PSR determines the privilege state. When the U flag is 1, the
system is in User Mode, otherwise it is in Supervisor Mode.

A program running in User Mode is prevented from accessing privileged registers.
These registers are:

e The most-significant byte of the Processor Status Register (PSR).
e The INTBASE register.

® The CFG register.

e All Memory Management registers.

The Interrupt Stack Pointer (SP0) is also implicitly protected by the fact that a
User-Mode program cannot access the PSR S bit to select it for use.

User-Mode restrictions are enforced by the Illegal Operation trap, Trap (ILL),
which occurs whenever a User-Mode program attempts to access a privileged
register. Instructions which cause, or may cause, Trap (ILL) are listed in

Programs running in Supervisor Mode have none of the above restrictions, as they
are assumed to be trusted portions of an operating system.

In addition to the above restrictions, memory-managed systems can restrict access
to memory pages based on the privilege state. Violations of such access restric-
tions cause the Abort trap, Trap (ABT). Since I/O devices are mapped as memory,
they may also be protected by this mechanism as required.
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Table 2-1 Privileged Instructions

Instruction Mnemonic
Load Processor Register (if INTBASE or PSR) LPRi
Store Processor Register (if INTBASE or PSR) SPRi
Bit Clear in PSR (if Word length) BICPSRW
Bit Set in PSR (if Word length) BISPSRW
Set Configuration SETCFG
Return from Trap RETT
Return from Interrupt RETI
Ioad Memory Management Register ILMR
Store Memory Management Register SMR
Move Value from Supervisor to User Space MOVSUi
Move Value from User to Supervisor Space MOVUSi
vValidate Address for Reading RDVAL
validate Address for Writing WRVAL
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Chapter 3

INSTRUCTIONS AND DATA TYPES

This chapter presents an overview of the Series 32000 instruction set by func-
tional groups and describes the data types and structures on which they act.

The groups by which this chapter is organized are:

Group

Integer Instructions

Packed Decimal (BCD) Instructions

Floating-Point Instructions

Logical Instructions

Bit Instructions

Bit Field Instructions

String Instructions

Block Instructions

Array Instructions

Processor Control Instructions

Processor Service Instructions

Memory Management Instructions

Custom Instructions

Instructions in each group are listed in three columns.

Instruction: A brief instruction name.
Mnemonic Forms: A list of all forms that the

take in assembly language.
Index:

Section

instruction mnemonic may

The general mnemonic form of the instruction. Chapter 5
(Instruction Set) is organized alphabetically by this

index.



Integer Instructions

Instruction
Arithmetic

Add
Add Quick
Add with Carry

Subtract
Subtract with Carry [Borrow]

Negate
Absolute Value

Multiply
Multiply Extended Integer

Divide

Modulus

Quotient

Remainder

Divide Extended Integer

Movement and Conversion

Move

Move Quick

Move with Sign-Extension
Move with Zero-Extension

Comparison

Compare
Compare Quick

Mnemonic Forms

ADDB, ADDW, ADDD
ADDQB, ADDQW, ADDQD
ADDCB, ADDCW, ADDCD

SUBB, SUBW, SUBD
SUBCB, SUBCW, SUBCD

NEGB, NEGW, NEGD
ABSB, ABSW, ABSD

MULB, MUIW, MULD
MEIB, MEIW, MEID

DIVB, DIVW, DIVD
MODB, MODW, MODD
QUOB, QUOW, QUOD
REMB, REMW, REMD
DEIB, DEIW, DEID

MOVB, MOVW, MOVD
MOVQB, MOVQW, MOVQD
MOVXBD, MOVXWD , MOVXBW
MOVZBD,MOVZWD,MOVZBW

CMPB, CMPW, CMPD
CMPQB, CMPQW, CMPQD

Integer instructions operate on byte, word, and double-word integer operands. (\;)
The following is a list of the Integer instructions:

Index

ADDi
ADDQi
ADDCi

SUBiL

SUBCi (:)
NEGi <::>
ABSi

- W
MEIi

DIVi
MODi

ot )

DEIi

MOVi
MOVQi
MOVXii

. /
MOVzii (\:>

CMPi .
CMPQi (;)

)
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Integer operands are binary numbers. An integer operand may be a byte (8 bits),
word (16 bits), or double-word (32 bits) in length. Its contents are interpreted
as either signed or unsigned.

Unsigned integers range from 0 to 255 (byte), 0 to 65535 (word), and 0 to
4,294,967,295 (double-word). Each bit in an unsigned integer is a value bit,
i.e., contributes to the integer's magnitude.

Signed integers are represented in two's-complement form. They range in value
from -128 +to 127 (byte), -32768 +to 32767 (word), and =~2,147,483,648 +to
2,147,483,647 (double-word) and have the following form:

=t -+
Is! !
- I i e s ay |
7 0
Fotm e —————— e —————— +
Is! !
I s s KL L ) D S S SRS S My |
15 8 7 0
et ———— o ———————— S —————————— -+
Is! !
e it o e B e o Dot S S ST SN SO UE Sy PUT S T S S
31 24 23 16 15 8 7 0

The most significant bit in a signed integer indicates the sign of the number. A
sign bit of zero specifies a positive value in which the remaining bits of the
operand are in true binary form. A sign bit of one specifies a negative value,
in which the remaining bits hold the two's complement of the absolute value of
the operand. The sign bit does not contribute to the integer's magnitude.

The following illustrates a byte, word, and double-word integer and gives the
signed and unsigned decimal interpretations for each.

Signed Unsigned

Binary (Decimal) (Decimal)
10011100 -100 156
1111111011101010 -278 65250
00000000000000000001001000110100 4660 4660

Addition and subtractid@ operations yield the correct result regardless of
whether the operands are interpreted as signed or wunsigned. In the Quick
instructions, however, one should note that the Quick immediate operand is
sign-extended internally before use, and should therefore only be considered
signed.

The other integer instructions treat integers as either signed or unsigned, as
stated in their individual descriptions in Chapter 5.

3-3



Integer Arithmetic

Integer arithmetic is performed to the length specified by the operation length
appended to the instruction mnemonic by the programmer. This length may be byte,
word or double-word (Section 4.1). Except where noted, the operands of these
instructions are both general, meaning that general addressing mode expressions
may be used independently to specify the location of each operand.

Addition instructions consist of ADDi, which adds two general operands, and ADDQi
(add Quick), which adds a small value (range -8 to +7) to a single general
operand. Extended addition to any length can be performed using the ADDCi
instruction, which adds also the contents of the PSR C bit (indicating a carry
from a previous addition).

Subtraction (the SUBi instruction) may be modelled as adding together the second
operand (the minuend), the one's complement of the first operand (the
subtrahend), and the value 1. This definition, using the one's complement, is
required to correctly define the overflow and borrow conditions (see "Exceptional
Conditions" below). The result is placed in the location of the second operand.
Extended subtraction to any ‘length caﬁ be performed using the SUBCi instruction,
which also subtracts the contents of the PSR C bit (indicating a borrow from a
previous subtraction).

Negation (NEGi) and Absolute Value (ABSi) functions are provided. These instruc-
tions read a general (source) operand, convert it, and store the result in a
second general operand location. Negation is performed by subtracting the source
value from zero.

Multiplication is performed according to the standard rules of algebra. The
length of the result may be selected as either the same length as the original
operands (using the MULi instruction) or double that length (using the MEIi
instruction). The MEIi instruction interprets its operands as unsigned integers,
making it usable for multiplication to arbitrary length. The distinction between
signed and unsigned operands is not relevant to the MULi instruction.

Division is performed according to three separate algorithms. The DIVi instruc-
tion divides the second operand by the first, producing as its result the nearest
integer which is less than, or equal to, the exact quotient. The QUOi instruc-
tion produces the nearest integer whose absolute value is less than, or equal to,
the exact quotient. These both interpret their operands as signed values. Note
that they differ when the quotient is negative. The DEIi instruction divides a
double-length integer (64, 32 or 16 bits) by a single-length divisor, and
produces both a quotient and a remainder. It interprets its operands as unsigned
for performing extended division; the distinction between the DIVi and QUOi
algorithms is therefore irrelevant to this instruction. Remainder instructions
are provided for both the DIVi and QUOi algorithms. The MODi (Modulus)
instruction performs division according to the DIVi algorithm and produces the
remainder as its result. The REMi (Remainder) instruction performs division as
per the QUOi instruction and produces the corresponding remainder.
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Movement and Conversion

The MOVi instruction moves the first general operand to the second. A variation
of this is the MOVQi instruction, which moves a small immediate value
(range -8 to +7) into a general operand location.

An integer value can be converted to any greater length while being moved. The
conversion for signed integers is provided by the MOVXii instructions, which
perform sign-extension, and the conversion for unsigned integers is provided by
the MOVZii instructions, which perform zero-extension.

Comparison

Integer comparison instructions compare two operands and set the PSR Z, N and L
bits to form a condition code. This condition code can be tested by subsequent
instructions for program control or saved to generate operands for Boolean
computations.

The CMPi instruction compares two general operands. The CMPQi instruction
compares a general operand to a small immediate value (range -8 to +7).

The contents of the PSR Z and N bits indicate the result of comparing the
operands as signed integers. The Z bit indicates equality when set. The N bit,
when set, indicates that the first operand is greater than the second.

The contents of the PSR Z and L bits indicate the result of comparing the
operands as unsigned integers. The Z bit indicates equality when set. The L
bit, when set, indicates that the first operand is greater than the second.



Exceptional Conditions

Three exceptional conditions may occur in integer operations. These are a carry
(or borrow), an overflow, or attempted division by zero.

Carry and borrow events are signaled in the Processor Status register C bit
(Section 2.2). When an addition instruction is executed, the occurrence of a
carry out of the most significant bit position (bit 7, 15, or 31, depending on
the selected operation length, Section 4.1) constitutes a "Carry" condition, and
is indicated by setting the PSR C bit. If no carry occurs, the PSR C bit is
cleared. When a subtraction instruction is executed, the lack of a carry out of
the most significant bit position constitutes a "Borrow" condition, and the PSR C
bit is set to indicate this exceptional condition. If a carry does occur, the
PSR C bit is cleared. The result delivered follows the standard rules of binary
two's-complement arithmetic, regardless of the occurrence of a carry or borrow
condition.

Overflow events from addition and subtraction are signaled in the Processor
Status Register F bit (Section 2.2). If the carry into the sign bit position and
the carry out of the sign bit position do not agree, this constitutes an
"overflow" condition, indicating that the correct result would be too great in
magnitude to represent as a signed integer in the number of bits selected as the
operation length (Section 4.1). If an overflow occurs in executing an addition
or subtraction instruction, the PSR F bit is set, otherwise it is cleared. The
result delivered follows the standard rules of binary two's-complement arithmetic
(including alteration of the sign bit), regardless of the occurrence of an
overflow.

Attempted division by zero always causes a trap, Trap(DVZ). This trap can occur
in the DIVi, MODi, QUOi, REMi and DEIi instructions. A trapped instruction

delivers no result, neither to the destination operand location nor to the PSR.

See Chapter 6 for details of trap handling.
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3.2 Packed Decimal Instructions

Packed Decimal instructions add and subtract packed decimal operands. There are
two Packed Decimal instructions:

Instruction Mnemonic Forms Index
Add Packed Decimal ADDPB, ADDPW, ADDPD ADDPi
Subtract Packed Decimal SUBPB, SUBPW, SUBPD SUBPi

A packed decimal operand consists of two, four,\or eight binary-coded decimal
(BCD) digits stored in a byte, word, or double-word, respectively. A BCD digit
is a 4-bit field whose value is within the range 0 to 9, encoded as binary 0000
to 1001, respectively. Each byte contains two BCD digits as illustrated below.
Digit d0 is the least-significant digit.

T Fmmm e +
! dlt ! dao !
I e e |
7 0
- = - + —_—
! d3 ! a4z ! a1 ! dao !
. I s T R R stk et ey
15 8 7 0
+ —_— - + + + + + +
! a7 t dae ! as ! a4 ! a3 !t 4z ! a1 ! 4o !
e i e e Bt L R ot Sl L SR SR R R S e
31 24 23 16 15 8 7 0

Packed Decimal instructions operate on two general operands. Both operands are
interpreted as unsigned numbers. The ADDPi instruction places the sum of the two
operands, plus the contents of the PSR C bit, into the second operand location.
The SUBPi instruction subtracts the first operand from the second, subtracting
also the contents of the PSR C bit, and places the result into the second operand
location. Incorporation of the PSR C bit into the result facilitates use of
these instructions in performing packed decimal calculations to arbitrary length.

Decimal subtraction can be modeled as adding the ten's complement of the subtra-
hend to the minuend.

Both operands must contain only legal BCD digits. If either operand contains
digits which are not legal, the result value is undefined, and the setting of the
PSR C bit is undefined.



Exceptional Conditions

A decimal carry or borrow condition can occur from Packed Decimal instructions.
Decimal carry and borrow events are signaled in the Processor Status register C
bit (Section 2.2).

When the ADDPi instruction is executed, the occurrence of a carry out of the
most-significant digit position constitutes a "carry" condition, and is indicated
by the CPU by setting the PSR C bit. This indicates that the sum is too large to
be held as a Packed Decimal number in the length of the original operands. The
result produced is the least-significant portion of the entire result.

If no carry occurs, the PSR C bit is cleared.

When the SUBPi instruction is executed, the lack of a carry out of the most
significant digit position constitutes a "borrow" condition, and the PSR C bit is
set to indicate this. A borrow condition indicates that a high-order "1" digit
has been assumed to the left of the most-significant minuend digit in order to
produce a positive result.

If a carry does occur from subtraction, the PSR C bit is cleared.

o
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3.3 Floating-Point Instructions

Floating-Point instructions operate on floating-point numbers. Included also in
this group are the instructions which load and store the Floating-Point Status
register (FSR). The following is a list of the Floating-Point instructions:

Instruction Mnemonic Forms Index
Add Floating ADDF, ADDL ADDf
Subtract Floating SUBF, SUBL SUBE
Multiply Floating MULF, MULL MULE
Divide Floating DIVF, DIVL DIVE
Negate Floating NEGF, NEGL NEGE
Absolute Value Floating . ABSF, ABSL ABSE
Compare Floating CMPF, CMPL CMPE
Move Floating MOVF, MOVL MOVE
Move Long Floating to Floating " MOVLF MOVLF
Move Floating to Long Floating MOVFL MOVFL
Move Integer to Floating MOVBF, MOVWF, MOVDF, MOVif

MOVBL, MOVWL, MOVDL
Round Floating to Integer ROUNDFB, ROUNDFW, ROUNDFD, ROUNDfi
} ROUNDLB, ROUNDLW, ROUNDLD '
Truncate Floating to Integer TRUNCFB, TRUNCFW, TRUNCFD, TRUNCEi
TRUNCLB, TRUNCLW, TRUNCLD
Floor Floating to Integer FLOORFB, FLOORFW, FLOORFD, FLOORfi

FLOORLB, FLOORLW, FLOORLD

Load FSR LFSR LFSR
Store FSR SFSR SFSR

Floating-point arithmetic operations are performed by the ADDf, SUBf, MULf and
DIVE instructions. The NEGf and ABSf instructions move the negative or the
absolute value of their first operand to the second operand location. The CMPf
instruction compares two floating-point values, setting the PSR condition codes
as per the CMPi (integer compare) instruction. The MOVEf instruction moves a
floating-point value.

The full range of conversions are provided; between floating-point types, and
between any integer and floating-point types. Conversion from floating-point to
integers can be performed by rounding to nearest (ROUNDfi), toward zero (TRUNCEi)
or toward negative infinity (FLOORfi).

The LFSR and SFSR instructions load and store the FSR, which holds mode and
status information pertaining to floating-point operations (Section 2.4.2).
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3.3.1 Floating-Point Operand Formats

The Series 32000 Floating-Point instruction set operates on two floating-point
data types: single precision (32 bits) and double precision (64 bits).
Floating—poinﬁ instruction mnemonics use the operation length suffix F (Floating)
to specify the single precision data type and the suffix L (Long Floating) to
specify the double precision data type.

A floating-point number is divided into three fields as shown in Figure 3-1.

11 8 ! 23 !

1St E ! F !

1-1- - !

31 30 23 22 0

Single Precision

11 11 \ vl . 82 !
1St E - F !
1-1- - '
63 62 l 52 51! 0

P (i G
SHE ax}tw P,
unble Precision

Figure 3-1 Floating-Point Operand Formats

The F field is the fractional portion of the represented number. The binary
point is assumed to be immediately to the left of the most-significant bit of the
F field, with an implied 1 bit to the left of the binary point. Thus, the F
field represents values from 1.0 (inclusive) to 2.0 (exclusive) as shown in
Table 3-1.

Table 3-1 SAMPLE F FIELDS

F Field Binary Value Decimal Value

000...0 1.000...0 1.000...0

010...0 1.010...0 1.250...0

100...0 1.100...0 1.500...0

110...0 1.110...0 1.750...0
ImplIed
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The E field holds an unsighed number which gives the binary exponent of the
represented number. The value in the E field is biased; that is, a constant bias
value must be subtracted from the value in the E field in order to obtain the
true exponent. This bias value is 011...11 (binary), which is either the value
127 (in single precision) or 1023 (in double precision). Thus, the true binary
exponent can be either positive or negative, as shown in Table 3-2.

Table 3-2 Sample E Fields

E Field F Field Represented Value

-1

$ 011...110 FF"  100...0 1.5 * 2 = 0.75
0

0110-.111 100-0-0 105 * 2 = 1.50
1

100...000 100...0 1.5 * 2 = 3.00

NOTE: Two forms of the E field represent special values, and are not interpreted
as binary exponent values. 11...11 represents a value which is a Reserved
operand (Section 3.3.4). 00...00 represents the value Zero (Section
3.3.3) if the F field is also all zeroes, otherwise the represented value
is a Reserved operand.

The S bit indicates the sign of the operand: 0 for positive and 1 for negative.

Floating=point numbers are represented in sign-magnitude form, such that only the
S bit is complemented in order to change the sign of the represented number.

3.3.2 Normalized Numbers

Normalized numbers are numbers in floating-point format, where the E field is
neither all zeroes nor all ones.

The value represented by a normalized number is determined by the formula:

S (E-Bias)
(=-1) * 2 * 1.7 .

The ranges of normalized numbers are given in Table 3-3.
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Table 3-3 NORMALIZED FLOATING-POINT RANGES

Single Precision Double Precision
127 -23 1023 =52
Most Positive 2 * (2 -2 ) 2 * (2 -2 )
38 308
= 3.40282346 * 10 = 1.7976931348623157 * 10
-126 -1022
Least Positive 2 2
-38 -308
= 1.17549436 * 10 = 2,2250738585072014 * 10
-126 -1022
Least Negative -(2 ) -(2 )
-38 -308
= =1.,17549436 * 10 = ~2,2250738585072014 * 10
127 -23 1023 -52
Most Negative -2 * (2 - 2 ) -2 * (2 - 2 )
38 308
= =3,40282346 * 10 = =1.7976931348623157 * 10

NOTE: The values given are extended one full digit beyond their repre-
sented accuracy to help in generating rounding and conversion
algorithms.

3.3.3 Zero

There are two representations for zero -- a positive form and a negative form.
Positive zero has all-zero F and E fields, and its S bit is zero. Negative zero
also has all-zero F and E fields, but its sign bit is one. In spite of these
differences, the two zeroes are considered equal to each other when compared
using the CMPf instruction.
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3.3.4 Reserved Operands

The proposed IEEE Standard for Binary Floating Point Arithmetic (IEEE Task P754)
provides for certain exceptional forms of floating-point operands. The Series
32000 hardware currently treats these forms as reserved operands. The reserved
operands are:

® Positive and Negative Infinity
® Not-a-Number (NaN) values
® Denormalized numbers

Both Infinity and NaN values have all ones in their E fields. Denormalized
numbers have all zeroes in their E fields and non-zero values in their F fields.

The Series 32000 hardware causes an Invalid Operation trap (Section 3.3.7) if it
receives a reserved operand, unless the instruction being executed is a simple
MOVE instruction (move without conversion). The Series 32000 hardware does not
generate reserved operands as results of floating-point calculations. The
trapping mechanism used in the Series 32000 family allows handling of these
operand forms transparently in software.

3.3.5 Integers

Some floating-point instructions perform conversions between integer and
floating-point data types. Integers are accepted and generated as two's
complement values of byte, word or double-word length, as specified in the
conversion instruction.

3.3.6 Memory Representations

Floating~point operands are stored in memory with the least-significant byte at
the lowest address, except in the Immediate addressing mode. In this mode, the
operand is held within the instruction format with the most-significant byte at
the lowest address.



3.3.7 Floating-Point Traps

Trap (UND)

The Floating~Point instruction set is made available to a Series 32000-based
system with an NS32081 Floating-Point Unit by setting the: F bit in the CFG
register (Section 2.3). If the CFG F bit is not set, any floating-point
instruction causes the Undefined Instruction trap, Trap (UND). See Chapter 6 for
further details. 1In systems without floating-point hardware, Trap (UND) can be
used to transfer control to floating-point emulation software.

Trap (FPU)

Any exceptional conditions encountered during the execution of a floating=point
instruction will cause a floating-point trap. This trap is labeled Trap (FPU)
and uses the fourth entry (entry #3) of the Interrupt Dispatch Table (Chapter 6).

The following are true for any floating-point instruction causing Trap (FPU):
1. The status fields of the FSR are updated before trapping.

2. No other result is delivered, neither to the destination operand loca-
tion nor to the Processor Status Register (PSR).

3. The return address pushed onto the Interrupt Stack is the address of
the first byte of the trapped instruction. This allows software analy-
sis or emulation of the trapped instruction, or re-execution after the
exception has been logged.

For further details of trap service, see Chapter 6.
The conditions which cause Trap (FPU) are:

1. Underflow. A non-zero floating-point result is too small in magnitude
to be represented as a normalized floating=-point number in the format
of the destination operand. This condition is always reported in the
FSR TT field and UF bit, but causes a Trap (FPU) only if the FSR UEN
bit is set. If the UEN bit is not set, a result of Positive Zero is
produced, and no trap occurs.

2. Overflow. A result (either floating-point or integer) of a floating-
point instruction is too great in magnitude to be held in the format of
the destination operand. WNote that rounding, as well as calculations,
can cause this condition.
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Divide by Zero. An attempt has been made to divide a non-zero
floating-point number by zero. Dividing zero by zero is considered an
Invalid Operation instead (below). Note that the trap caused by this
condition is still Trap (FPU) and not Trap (DVZ), which is caused only
by integer instructions.

Illegal Instruction. Two undefined floating-point instruction forms
cause Trap (FPU) rather than Trap (UND). The binary formats causing
this trap are:

XXxxxxxxxx0011xx10111110
XXXxxxxxxx1001xx10111110

Invalid Operation. One of the floating-point operands of a floating-
point instruction is a Reserved operand (Section 3.3.4), or an attempt
has been made to divide zero by zero using the DIVf instruction.

Inexact Result. The result (either floating-point or integer) of a
floating-point instruction cannot be represented exactly in the format
of the destination operand, and a rounding step must alter it to fit.
This condition is always reported in the FSR TT field and IF bit unless
any other exceptional condition has occurred in the same instruction.
In this case, the TT field always contains the code for the other
exception and the IF bit is not altered. A Trap (FPU) is caused by
this condition only if the FSR IEN bit is set; otherwise the result is
rounded and delivered, and no trap occurs.



3.4 Logical Instructions

Logical instructions perform masking, shifting and Boolean arithmetic operations.
The following table lists the logical instructions:

Instruction Mnemonic Forms Index
Arithmetic
Logical AND ANDB, ANDW, ANDD ANDi
Logical OR ORB, ORW, ORD ORi
Bit Clear BICB, BICW, BICD BICi
Exclusive OR XORB, XORW, XORD XORi
Complement coMB, COMW, COMD coMi
shift
Arithmetic shift ASHB, ASHW, ASHD ASHi
Logical shift LSHB, LSHW, LSHD LSHi
Rotate ROTB, ROTW, ROTD ROTi
Boolean
Complement Boolean NOTB, NOTW, NOTD NOTi
Save Condition as Boolean ScondB, ScondW, ScondD Scondi

The arithmetic instructions perform bitwise Boolean arithmetic on byte, word or
double-word general operands. The shift instructions perform shifting on byte,
word or double-word general operands. The Boolean instructions generate and
complement Boolean values.

The ANDi, ORi and XORi instructions perform the bitwise Boolean AND, OR and
Exclusive OR functions between two general operands. The BICi instruction
performs an AND NOT operation, clearing all bits in the second operand which are
set in the first. The COMi instruction moves the bitwise complement of the first
operand to the second.

The shift instructions shift their second general operand in the direction and by
the magnitude given by the first operand (a positive shift is left, a negative
shift is right). The logical shift fills the emptied bit positions with zeroes
always. The arithmetic shift fills these locations with zeroces if the shift is
to the left, and with the original contents of the sign bit (the most-significant
bit) if the shift is to the right. The rotation shift consecutively replaces
each bit emptied with the contents of the bit shifted out of the operand.

NOTE: The result generated by shifting an operand by a count which is greater
than, or equal to, its length in bits is undefined.
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The Boolean instructions generate and handle unpacked Boolean values, defined as
integers whose values are interpreted as 0 = False and 1 = True. This definition
follows conventions established by several high-level languages which require
that True be greater than False when compared and that conversions between
Boolean and integer variables generate the above correlation between values.

All of the logical arithmetic instructions perform correct Boolean arithmetic on
Boolean values except the COMi instruction. To allow complementing Boolean
values (from True to False and vice versa), the NOTi instruction is provided,
which complements only the least-significant bit of its first operand, placing
the result in the second.

Because Boolean arithmetic often deals with values derived from relational
operations (e.g. whether one value is greater than another), the Save Condition
(Scondi) instruction is provided, which generates a Boolean value based on a
condition code test.



3.5 Bit Instructions

Bit instructions perform or support manipulation of individual bits in General
Purpose Registers or memory. The following is a list of the Bit instructions:

Insﬁruction Mnemonic Forms Index
Test Bit TBITB, TBITW, TBITD TBITi
Set Bit SBITB, SBITW, SBITD, SBITi,

SBITIB, SBITIW, SBITID SBITIi
Clear Bit CBITB, CBITW, CBITD, CBITi,

CBITIB, CBITIW, CBITID CBITIi
Invert Bit IBITB, IBITW, IBITD IBITi
Find First Set Bit FFSB, FFSW, FFSD FFSi
Convert to Bit Pointer CVTP CVTP

The TBIT instruction tests a bit by copying its contents to the PSR F bit. The
SBIT, CBIT and IBIT instructions test the specified bit, and then either set,
clear or invert it. The SBITI and CBITI instructions, in addition, allow testing
and either setting or clearing of a bit in an indivisible operation for
handling multiprocessor semaphores.

The FFSi and CVTP instructions do not operate on bits, but provide related
functions to aid in bit handling. The FFSi instruction scans a byte, word or
double-word for a set bit, producing its position as a one-byte offset value.
The CVTP instruction generates the bit address of a specified bit.

Bit positions are specified using two general operand specifications: a base and
an offset, as in the instruction.

TBITi offset,base

The base operand specification is used only to determine a base location (either
a memory address or a register) relative to which the bit is to be located, and
does not itself reference an operand at that location. The offset is a general
operand of byte, word or double-word length, as specified by the operation length
selected by the programmer (Section 4.1). It contains a signed integer which
specifies the position of the desired bit relative to bit 0 of the location
specified as the base.

If the base is specified as a General Purpose register, the offset must be within
the range 0 to 31, inclusive. If the offset is outside this range, the location
of the bit is undefined.
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If the base is specified as a memory address, the offset specifies a bit in
MEemory.

Both positive and negative offsets are allowed and meaningful. An offset of 0
specifies bit 0 of the byte at the base address. BAn offset of 8 specifies bit 0
of the byte at the next higher address. An offset of -1 specifies bit 7 of the
byte at the next lower address, and an offset of -8 specifies bit 0 of the byte
at the next lower address.

The maximum range of a double-word offset is ~2,147,483,648 to +2,147,483,647
bits, corresponding to an addressing range of -268,435,456 to +268,435,455 bytes
from the specified base. Note that this is considerably greater than the
memory space currently implemented.

If the offset operand specifies a bit outside the memory space, the location of
the bit is undefined. See Section 2.6.1 for considerations of memory size.

The address of the byte containing the desired bit is formally defined as
EA(base) + (offset DIV 8)

where "EA(base)" is the effective address calculated from the base operand

specification and "offset DIV 8" is the nearest integer less than or equal to

offset/8 (as per the DIVi instruction). The bit number of the desired bit is

computed as

offset MOD 8

where MOD is the modulus function (as per the MODi instruction).



The following examples illustrate the interpretations of various Dbit

specifications:

Example 1:
L offset -—-—-——====—-- !
+ ——— Bk T et e L LD Lt +=+
RO ! 1% [
s o e a ra s all Dt ol B P e el e et e |
31 24 23 16 15 8 7 0
Offset : 16 Base : RO
Interpreted as bit 16 of register RO.
Example 2:
1mmmmm <= - offset i !
~~~~~ s pat S + + +=+
eos ! (] ! ! ! !
s T S B e ks et ks sl Sl o B S e e e el e e e et ey |
0!7 4 0!7 017 017 0!
1004 ! 1003 ! 1002 ! 1001 ! 1000 !
Offset: +28 EA(Base): 1000

Interpreted as bit 4 of the byte at address 1003.

In this example, the address of the byte containing the desired bit is
1000 + (28 DIV 8), or 1003, since 28 DIV 8 = 3. The bit number within this byte

is 28 MOD 8, or 4.

Example 3:

e offset-—-—=—~=-- >!
----- BT e s St aat e S P e L e L e e e et Lt
oo ! 1l ! 1% ! !
T T T e e s e S R ) B e N L e S s h
0!7 017 0!7 3 0!7 0!
1004 ! 1003 ! 1002 ! 1001 ! 1000 !
Offset: =13 EA(Base): 1003

Interpreted as bit 3 of the byte at address 1001.

In this example, the address of the Dbyte containing the desired bit is
1003 + (=13 DIV 8), or 1001, since -13 DIV 8 = -2. The bit number within this
byte is -13 MOD 8, or 3. If these results look confusing, consult again the
definitions of the DIV and MOD operations given above.
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3.6 Bit Field Instructions

Bit Field instructions copy information to and from unaligned fields in General

Purpose Registers or memory. The following is a 1list of the Bit Field
instructions:
Instruction Mnemonic Forms Index
Extract Field EXTB, EXTW, EXTD EXTi
Extract Field sShort EXTSB, EXTSW, EXTSD EXTSi
Insert Field INSB, INSW, INSD INSi
. Insert Field sShort INSSB, INSSW, INSSD INSSi

Extract instructions read a bit field and place it into a byte, word, or double-
word general operand, right-justified. 1Insert instructions replace a bit field
from aligned information in a general operand. A bit field may be one to 32 bits
in length.

A bit field is fully specified by the position of its least-significant bit and
its length in bits. The position of the least-significant bit is specified as in
the Bit instructions (Section 3.5), using a general operand specification for the
base and an offset contained either in a General Purpose Register or (in the
"Short" forms of these instructions) in an immediate constant. The length of the
field is specified as an immediate constant, which must specify a length in the
range of 1 to 32 bits, inclusive. The interpretation of any length specified
outside this range is undefined.

The general bit field instructions (EXTi and INSi) allow a 32-bit offset value to
be dynamically specified in a General Purpose Register, supporting the indexing
necessary to access structures such as Pascal packed arrays. The "Short" bit
field instructions (EXTSi and INSSi) eliminate the overhead of loading a register
when the offset is fixed, as is commonly the case in accessing structures such as
Pascal packed records.

If the base is specified as a General Purpose Register, the bit field is in that
register. The offset must be within the range 0 to 31, and the entire bit field
must be contained within the specified register, otherwise the location of the
bit field is undefined.

If the base is specified as a memory address, the offset specifies a bit in
memory as the least-significant bit of the field. Both positive and negative
offsets are allowed and meaningful, as in Bit instructions (Section 3.5). If the
offset specifies a bit outside the memory space, or if it causes the bit field to
extend outside the memory space, the location of the bit field is undefined. See
Section 2.6.1 for considerations of memory size.



As in the Bit instructions, the address of the byte containing the least-
significant bit of the field is defined as

EA(Base) + (offset DIV 8)

where "EA(Base)" is the effective address calculated from the base operand
specification and "offset DIV 8" is the nearest integer less than, or equal to,
offset/8 (as per the DIVi instruction). The bit number of the least-significant
bit in the field is computed as

offset MOD 8
where MOD is the modulus function (as per the MODi instruction).

NOTES: 1. The current implementation of bit field instructions places an
alignment restriction on bit fields greater than 25 bits in
length. This restriction is imposed due to the fact that a field
in memory is accessed in a double-word transfer starting at the
byte containing the least-significant bit of the field. A bit
field in memory must be composed of bits from no more than four
contiguous bytes. For a field of 25 bits or less, this imposes no
restriction on alignment, as it is impossible for such a field to
span more than four bytes.

2. Regardless of the length of a bit field in memory, it is always
accessed by Bit Field instructions as a double-word starting with
the byte which contains the least-significant bit of the field.
The Extract instructions read a full double-word, and the Insert
instructions read, modify and rewrite a full double-word. These
instructions can therefore cause a page fault in memory-managed
systems if the field is close to the end of a page. In multiproc-
essor systems, care should be taken to ensure that the processors
do not attempt to modify adjacent fields simultaneously.
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The following examples illustrate how a bit field is located in a register and in
memory:

Example 1:

! <=~offset--!
o e e e e Fom—————————— —— +=+

RO 1 1k k k ok ok ok k k Kk Kk x| 1t
R e e B s s Sl [ SR S A S Sy |

31 24 23 16 15 87 6 0

Base: RO Offset: 6 Length: 11
Interpreted as an 11-bit field in register RO starting with bit 6.

Example 2:
(==~ offset —=--- !
----- B e E T T = e et L R
R | I %k % Kk Kk ok Kk k k Kk KkIk Kk Kk *k Kk Kk k| | [
e e e D Lt e e e e e B s Rl Lot St RN SIS SUS SR AN PRI SRS SSNOT ST SOOF NS S Sy |
0!7 01!7 017 1 017 0!
1004 ! 1003 ! 1002 ! 1001 ! 1000 !

EA(Base): 1000 Offset: +9 Length: 20
Interpreted as a 20-bit field starting at bit 1 of address 1001.

In this example, the address of the byte containing the least-significant bit of
the field is 1000 + (9 DIV 8), or 1001. The bit number of the first field bit
within that byte is 9 MOD 8, or 1.

Example 3:
e offset ———===-- >1
+ —— +-+ + Fm———— +- + - ——t
ceesl! 1t ! I* % % ! !
=t=t=let=t=t—t—t=t=t= =t ot ot et tetmt = |mf et et mfm bt = [t fm e fm e e |
0!7 017 0!7 3 0t!7 0!
1004 ! 1003 ! 1002 ! 1001 ! 1000 !

EA(Base): 1003 Offset: -13 Length: 3
Interpreted as a 3-bit field starting at bit 3 of address 1001.

In this example, the address of the byte containing the least-significant bit of
the field is 1003 + (-13 DIV 8), or 1001, since —-13 DIV 8 = -2. The bit number
of the first field bit in that byte is =13 MOD 8, or 3. If these results look

confusing, consult again the definitions of the DIV and MOD operations given
above.
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3.7 String Instructions

String instructions operate on strings of integer elements. The following is a
list of the String instructions:

Instruction Mnemonic Forms Index
Move String MOVSB, MOVSW, MOVSD MOVSi
Move String, Translating MOVST MOVST
Compare Strings CMPSB, CMPSW, CMPSD CMPSi
Compare Strings, Translating CMPST CMPST
Skip String SKPSB, SKPSW, SKPSD SKPSi
skip String, Translating SKPST SKPST

A string is a sequence of integer elements, all of the same length, stored in
consecutive memory locations. Elements of a string may be bytes, words, or
double-words as specified by the operation length (Section 4.1), except when the
Translating form (above) is used, in which case the elements must be bytes.

String instructions operate on either one or two strings. These strings are

designated String 1 and String 2. The MOVS instructions copy elements from
String 1 to String 2. The CMPS instructions compare String 1 elements to the
corresponding String 2 elements. The SKPS instructions scan elements of

String 1, without using a String 2.

String locations and length are specified by the General Purpose registers RO,
R1, and R2. Before instruction execution, the registers must be set to the

following:
RO -- the maximum number of elements to be processed
R1 -- the address of the first element of String 1

R2 -- the address of the first element of String 2 (except for SKPS, which
does not use or modify R2)

NOTE: The number of elements processed is undefined if register RO contains a
negative number.

String instructions process the elements of the string(s) one at a time until a
specified termination condition is reached. After each element is processed, the
instructions modify the 32-bit contents of registers RO, R1, and R2 so that they
contain the following values:

RO -- the number of elements left to be processed (old contents minus one)
R1 -- the address of the next element of String 1
R2 -- the address of the next element of String 2 (except in SKPS)

If the resulting value in RO is zero, the instruction terminates. The contents
of register R2 always remain unchanged by the SKPS instruction.
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Options

String instructions have the following options:

Translation (T)
Backward (B)
Until Match (U)
While Match (W)

Additional information required by these options is specified in General Purpose
registers R3 and R4, as follows:

R3 -- the address of a translation table, required if the Translation option
is specified

R4 -- a termination value, required if the Until Match or While Match option
is specified

Registers R3 and R4 remain unchanged by the instruction.

The Translation option causes a string instruction to translate each String 1
element before using it. String instructions with the Translation option operate
on 1-byte elements only, and because of this the Translation option is specified
as a mnemonic suffix "T" replacing the operation length suffix.

Translation is performed by using the String 1 element value as an unsigned index
into a translation table, whose base address is taken from register R3. A byte
is read from this table location, and is used in place of the original String 1
element.

The Backward option causes a string instruction to reverse its direction,
processing string elements from successively lower memory addresses instead of
successively higher addresses. This means that registers R1 and R2 are decre-
mented by the element length after each element is processed instead of being
incremented. The Backward option is specified in assembly language by listing
the letter B in the instruction as an operand. When used in conjunction with the
Until Match or While Match option, it must be separated with a comma.

The Until Match and While Match options specify a termination condition based on
whether the contents of each String 1 element match the contents of register R4
(after translation, if that option is also specified). 1In order to distinguish
this termination condition from any other, the PSR F bit is set to 1 before
termination. The Until Match and While Match options are mutually exclusive.

If the Until Match option is specified, the instruction terminates as soon as the
current value matches R4. This option is specified in assembly language by list-
ing the letter U in the instruction as an operand.

If the While Match option is specified, the instruction terminates as soon as the
current value does not match R4. This option is specified in assembly language
by listing the letter W in the instruction as an operand.



Option Encoding

Each string instruction contains a 4-bit field defining which options are
specified. The field has the following form:

o ———— .
' W t B! T!
pomm et e e e e

The 1-bit T field defines the state of the Translation option. If the field is
1, the Translation option is in effect; otherwise, the option is not in effect.
If the T bit is set, the operation length field (i) must contain binary 00
(Byte) .

The 1-bit B field defines the state of the Backward option. If the field is 1,
the option is in effect; otherwise, the option is not in effect.

The 2-bit UW field defines the state of the Until and While options, as given
below:

00 neither option
01 While Match

10 (reserved)

11 Until Match

Interrupts During String Instructions

String instructions are interruptible. If an interrupt is asserted during a
String instruction, the CPU first finishes processing the current string element.
It then saves the address of the String instruction as the return address and
passes control to the interrupt service procedure. When the interrupt service
procedure returns, the String instruction is re-executed, but because the
registers have been updated this has the effect of continuing string processing
from the point where the instruction was interrupted. Note that the interrupt
service procedure must follow the standard practice of restoring all registers
used before returning.
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Termination Conditions

(’\\ A string instruction terminates for one of the following reasons:

1. The limit count originally specified in register RO has been decremented
to zero, or was zero at the beginning of the instruction.

2. The CMPS instruction has found a pair of string elements which are
unequal and has, therefore, determined which string has the greater
value.

3. The Until Match or While Match option is in effect and the string
instruction has found an element in String 1 which meets the specified
termination condition.

[
When a string instruction terminates due to its limit count, the resulting state
(’\\ of the machine is as follows:
~ PSR - bit F = 0. If a CMPS instruction terminates for this reason, then
' also PSR bits 2 =1, N=0, L = 0.
RO -- contains 0.
R1 =- contains the address of the next unprocessed String 1 element.
R2 —-- contains the address of the next unprocessed String 2 element (except
in SKPS).
//\\ When a CMPS instruction finds an unequal pair of string elements, the resulting

state of the machine is:

PSR - bits F = 0 and 2 = 0. The N and L bits indicate the relation between
the two unequal string elements.
RO -- contains the number of element pairs left to be processed (this
includes the element pair which caused termination) .
R1 =-- contains the address of the String 1 element which caused
f/\\ termination.
R2 =-- contains the address of the String 2 element which caused
termination.
) Whenever the Until Match or While Match option terminates execution of a string

instruction, the resulting machine state is:

PSR =~

RO --

R1 —-

R2 ==

bit F = 1. If a CMPS instruction terminates for this reason, then
also PSR bits Z =1, N=0, L = 0. i

contains the number of elements left to be processed (this includes
the element which caused termination).

contains the address of the element in String 1 which caused
termination _

contains the address of the element in String 2 which corresponds to
the String 1 element which caused termination (except in SKPS)

The contents of registers R3 and R4 always remain unchanged.
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Detailed Sequences

Table 3-4 below gives the detailed execution sequences followed by the string
instructions. A temporary holding location within the processor is referenced by
the name "TEMP".

Table 3-4 Execution Sequences

CMPS

MCVS

SKPS

In the PSR, set bits 2z=1, N=0, L=0.

If RO = 0, set the PSR F bit to 0
and terminate the instruction.

If RO = 0, set the PSR F bit to 0 and
terminate the instruction.

If RO = 0, set the PSR F bit to 0 and
terminate the instruction.

Read the current String 1 element
(address in Rl) from memory into
TEMP.

Read the current String 1 element
(address in Rl) fram memory into TEMP.

Read the current String 1 element
(address in R1l) from memory into TEMP.

If the Translation option is
selected, then zero-extend TEMP from
8 bits to 32 bits and add it to the
contents of R3, generating the
address of a translation table entry.
Read a byte from this memory location
and place it into TEMP.

If the Translation option is selected,
then zero—extend TEMP from 8 bits to
32 bits and add it to the contents of
R3, generating the address of a trans-
lation table entry. Read a byte from
this memory location and place it into
TEMP.

If the Translation option is selected,
then zero-extend TEMP from 8 bits to
32 bits and add it to the contents of
R3, generating the address of a trans-
lation table entry. Read a byte from
this memory location and place it into
TEMP.

If the Until Match or While Match
option is specified, then compare
TEMP to R4, interpreting both as
integers of the size specified by the
operation length.

If the Until Match option is speci-
fied, and TEMP and R4 are equal, then
set the PSR F bit to 1 and terminate
the instruction.

If the While Match option is speci-
fied, and TEMP and R4 are unequal,
then set the PSR F bit to 1 and
terminate the instruction.

If the Until Match or While Match
option is specified, then compare TEMP
to R4, interpreting both as integers
of the size specified by the operation
length.

If the Until Match option is speci-
fied, and TEMP and R4 are equal, then
set the PSR F bit to 1 and terminate
the instruction.

If the While Match option is speci-
fied, and TEMP and R4 are unequal,
then set the PSR F bit to 1 and
terminate the instruction.

If the Until Match or While Match
option is specified, then compare TEMP
to R4, interpreting both as integers
of the size specified by the operation
length.

If the Until Match option is speci-
fied, and TEMP and R4 are equal, then
set the PSR F bit to 1 and terminate
the instruction.

If the While Match option is speci-
fied, and TEMP and R4 are unequal,
then set the PSR F bit to 1 and
terminate the instruction.

Compare TEMP to the contents of the
current String 2 location (address in
R2) and update PSR bits %z, N and L to
reflect the result. If the resulting
7 bit is zero (meaning not equal),
then set the PSR F bit to 0 and
terminate the instruction.

Write TEMP to the current String 2
location (address in R2).

Do nothing; continue to Step 6.

If the Backward option is specified,
decrement Rl and R2 by the length in
bytes specified by the operation
length. Otherwise, increment Rl and
R2 by this amount.

If the Backward option is specified,
decrement Rl and R2 by the length in
bytes specified by the operation
length. Otherwise, increment Rl and
R2 by this amount.

If the Backward option is specified,
decrement Rl by the length in bytes
specified by the operation length.
Otherwise, increment Rl by this
amount.

Decrement RO by 1.

Decrement RO by 1.

Decrement RO by 1.

If an interrupt is pending, service
it here. Otherwise, go to Step 1.

If an interrupt is pending, service it
here. Otherwise, go to Step l.

If an interrupt is pending, service it
here. Otherwise, go to Step 1.
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3.8 Block Instructions

Block instructions move and compare byte, word, and double-word elements stored
in contiguous blocks of memory. There are two block instructions:

Instruction Mnemonic Forms Index
Move Multiple MOVWMB, MOVMW, MOVMD MOVMi
Compare Multiple CMPMB, CMPMW, CMPMD CMPMi

A block is a small string (16 bytes or less) of integers.
Block instructions differ from their string counterparts in three major ways:

1. They require no overhead in setting up registers, as both block
operands are general.

2. They are not interruptible.

3. They are limited to blocks of 16 bytes or less so that they do not
adversely affect interrupt latency.

Block instructions have three operands: blockl, block2, and length. The MOWMi
instruction copies block1 to block2. The CMPMi instruction coﬁpares the elements
of block1 to the corresponding block2 elements, indicating in PSR bits Z, N and L
which block contains the greater value, or whether they are equal.

Block1 and block2 are general operands which must be in memory (access class
addr, Section 4.2.1).

The length operand is an immediate value which specifies the length of each
block. In assembly language, length is specified as the number of elements
{(bytes, words or double-words) in the block. (This is not the value which is
encoded in the binary form of the instruction.) Since a block must contain at
least one byte and no more than 16 bytes, the range of values for length depends
on the instruction's operation length suffix (B, W, or D: Section 4.1) as shown
by the following:

Operation Length Suffix length
B 1 to 16
W 1 to 8
D 1 to 4
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In the binary form of the instruction, the block length is encoded in a displace-
ment field and appended to the basic instruction. The displacement field
contents are to be computed from the specified length value as

(length - 1) * i
where i is the element size in bytes: 1 (for B), 2 (for W), or 4 (for D).

NOTES: 1. The two block operands of the MOWIi instruction must not overlap.
If they do overlap, the resulting values in the destination block
are undefined.

2. If the binary contents of the length operand differ from those
values which can be derived from the expression above, the length
of the blocks is undefined.
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3.9 Array Instructions

Array instructions operate in conjunction with the Scaled Indexing addressing
mode option (Section 4.4.9) +to support random accesses into single- and
multi-dimensional arrays. The following is a list of the array instructions:

Instruction Mnemonic Forms Index
Bounds Check CHECKB, CHECKW, CHECKD CHECKi
Calculate Index INDEXB, INDEXW, INDEXD INDEXi

An array consists of a number of elements of the same length, stored in a
contiguous block of memory. An array can be of a single dimension (i.e., a
vector) or of multiple dimensions (i.e., a matrix). Individual elements in an
array are accessed using one subscript or index expression per dimension.

The CHECKi instruction performs a bounds check on any general operand, checking
whether its value is within the range specified by a pair of values in another
general operand. If so, it zero-adjusts the value by subtracting the lower bound
from it, and places the result in any specified General Purpose Register. If
not, it indicates an error in the PSR F bit, which can be used either as a branch
condition or to cause a trap (see the FIAG instruction). If the value being
checked is an index into a single-dimensional array, the result placed in the
register is directly usable with Scaled Indexing to access the indicated array
element.

The INDEXi instruction is used for accesses into multidimensional arrays. Its
purpose is to calculate a single 1-dimensional index based on the values of the
indexes (one per dimension) by which the desired element is specified. The order
in which the indexes are incorporated into the result depends on the scheme used
for ordering the array elements in memory.

Depending on the high-level language, array storage ordering generally follows
one of two schemes. Row major ordering, the most popular, and typical of the
Pascal and C languages, is shown in Table 3-5. Column major ordering, typical of
FORTRAN, is shown in Table 3-6. Note that in row major ordering it is the
rightmost index which is incremented with consecutive element addresses, and in
column major ordering it is the leftmost.




Table 3-5 Row Major Ordering Table 3-6 Column Major Ordering
Pascal array declaration: FORTRAN array declaration:
VAR A: ARRAY[1..2,1..3,1..2] INTEGER A(2,3,2)
OF INTEGER;
Element size: 4 bytes Element size: 4 bytes
Base address: 1000 (Hex) Base address: 1000 (Hex)
Array Element Address (Hex) Array Element Address (Hex)
A [1,1,1] 1000 A (1,1,1) 1000
A [1,1,2] 1004 A (2,1,1) 1004
A [1,2,1] 1008 A (1,2,1) 1008
A [1,2,2] 100C A (2,2,1) 100C
a [1,3,1] 1010 A (1,3,1) 1010
A [1,3,2] 1014 A (2,3,1) 1014
A [2,1,1] 1018 A (1,1,2) 1018
A [2,1,2] 101C A (2,1,2) 101C
A [2,2,1] 1020 A (1,2,2) 1020
A [2,2,2] 1024 A (2,2,2) 1024
A [2,3,1] 1028 A (1,3,2) 1028
A [2,3,2] 102C A (2,3,2) 102C

Note that the samebmemory location is referenced by the Pascal index sequence
[I,J,K] and the FORTRAN index sequence (X,J,I).

The general expression for the one-dimensional index generated to access either
al1,J3,X, ee. ,2] in Pascal or A(Z, ... ,K,J,I) in FORTRAN is:

(ee.((Ia*Dj+Ja)*Dk+Ka)*...) *Dz+Za

where Dj, Dk, ... , Dz are the lengths of A along the J, X, ... , and Z
dimensions, respectively, and the values Ia, Ja, Ka, ... , Za

are the index values, zero-adjusted by the CHECKi instruction (by subtracting
their lower bounds).

The INDEXi instruction implements one step of the evaluation of this expression
from the inside out, by providing the function

accum = accum * (length+1) + index

where accum is any register (RO-R7), used in consecutive INDEXi instructions as
an accumulator location,
index is the current index value being processed, and
length is a general operand containing the current dimension length minus 1
(so that it always matches the size of the index operand).
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3.10 Processor Control Instructions

Processor control instructions control the sequence of program execution. These
instructions provide conditional and unconditional branches, calls to and returns
from local and external procedures, and generation and returns from traps and
interrupts. The following is a list of the processor control instructions:

Instructions Mnemonic Forms Index
Branches
Jump JUMP JUMP
Conditional Branch Bcond Bcond
Unconditional Branch BR BR
Case Branch (Multiway) CASEB, CASEW, CASED CASEi
Add, Compare and Branch ACBB, ACBW, ACBD ACBi

Local Procedure Calls/Returns

Jump to Subroutine JSR - JSR
Branch to Subroutine BSR BSR
Return from Subroutine RET RET

External Procedure Calls/Returns

Call External Procedure CXP CXP

Call External Procedure CXPD CXPD
with Descriptor

Return from RXP RXP

External Procedure

Explicit Trap Instructions

Breakpoint Trap BPT BPT
Flag Trap (Conditional) FLAG FIAG
Supervisor Call Trap SvC svc

Trap/Interrupt Returns

Return from Trap* RETT RETT
Return from Interrupt* RETI RETI

* Privileged instruction (see note).

Branches transfer control to an instruction nonsequentially. The JUMP instruc-
tion allows the destination address to be specified using a general choice of
addressing modes. The BR instruction also transfers control, but provides a more
code-compact form for PC-relative references. The Bcond instruction performs a
branch as per the BR instruction if a specified condition code is true. The
CASEi instruction branches by adding the contents of any general operand to the
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Program Counter. In conjunction with Scaled Indexing (Section 4.4.9), this
implements a multiway branch which corresponds directly to the Pascal CASE
statement and the C SWITCH statement. The ACBi (Add, Compare and Branch)
instruction supports looping by adding a small increment (range -8 to +7) to any
general operand and branching if the result is non-zero.

Local procedure calls (JSR and BSR) transfer control as per the JUMP and BR
instructions, respectively, except that they first save the address of the next
sequential instruction onto the current stack as a 32-bit return address. The
called procedure returns control after such a call with the RET instruction.

External procedure calls are implemented by the CXP and CXPD instructions. An
external procedure is defined as a procedure which is in another module from the
procedure currently executing. See Section 2.7.2 for further details of the
module environment implemented by the Series 32000 architecture. An external
procedure call saves the current contents of the MOD register as well as the
return address onto the current stack, sets up the MOD and SB registers to match
the environment of the destination module, and transfers control. In the CXP
instruction, the destination procedure is specified with an index into the Link

Table belonging to the current module, from which a descriptor is read, locating

the destination. In the CXPD instruction, this descriptor is given as a general
operand, greatly facilitating references to procedures which have themselves been
passed as parameters. (A procedure can be passed as a parameter by passing its
descriptor, using the LXPD form of the ADDR instruction.) The RXP instruction is
used to return control after an external procedure call, restoring the MOD and SB
registers as well as the Program Counter.

Three instructions have the function of causing deliberate traps. The BPT, FIAG
and SVC instructions each have unique vectors in the Interrupt Dispatch Table
(Section 2.7.4). The BPT instruction is intended to support debug breakpointing
of programs. The FLAG instruction causes a trap if the PSR F bit is set (e.g. if
the previous ADD instruction overflowed), and the SVC instruction provides the
mechanism to make requests of a protected operating system.

The RETT instruction returns control from a trap or the Non-Maskable or Non-
Vectored interrupt, restoring the PSR, MOD and SB registers. Since traps are
often caused deliberately to request service of an operating system, the RETT
instruction also allows parameters on the top of the original stack to be
discarded in the process of returning. The RETI instruction is wused for
returning from any vectored maskable interrupt, providing the function of the
RETT instruction and also communicating with one or more NS16202 Interrupt
Control Units to implement transparent interrupt control.

NOTE: The instructions RETT and RETI are privileged, because they may change the
contents of the high-order byte of the PSR, which is protected. The
Illegal Operation trap, Trap(ILL), will occur if either of these instruc-
tions is attempted by a program in User Mode (i.e., while the PSR U bit is
set) .
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3. 11 Processor Service Instructions

Processor service instructions provide general housekeeping functions and
services. The following is a list of the processor service instructions:

Instructions Mnemonic Forms Index

Effective Address

Calculate Effective Address ADDR ADDR
Load External Procedure Descriptor LXPD LXPD
(alternate mnemonic for ADDR)

Context Instructions

™
Save General Purpose Registers ' SAVE SAVE
(’\\ Restore General Purpose Registers RESTORE RESTORE
Enter New Procedure Context ENTER ENTER
(M Exit Procedure Context EXIT EXIT

Register/Stack Manipulation

Adjust Stack Pointer ADJSPB, ADJSPW, ADJSPD ADJSPi
Bit Clear in PSR* BICPSRB, BICPSRW BICPSRB

N BICPSRW
Bit Set in PSR* BISPSRB, BISPSRW BISPSRB

BISPSRW

Load Processor Register* LPRB, LPRW, LPRD LPRi
Store Processor Register* SPRB, SPRW, SPRD SPRi
Set Configuration Register* SETCFG SETCFG
Miscellaneous

/f\\ No Operation NOP NOP
Wait for Interrupt WAIT WAIT
Diagnose DIA DIA

) * Privileged, or having privileged forms (see note).

There is one effective address instruction, ADDR, which calculates the effective
address of its first operand and places that 32-bit address into its second
operand location. The mnemonic LXPD (Load External Procedure Descriptor) is
provided as a specific form of the ADDR instruction which reflects the action of
ADDR when its first operand is specified using the External addressing mode
(Section 4.4.6) and is an external procedure rather than external data. See the
ADDR and LXPD instruction descriptions.




Context instructions allow the saving and restoring of portions of the processor
context to and from the current stack. The SAVE instruction pushes the contents
of any set of General-Purpose registers specified by the programmer. The RESTORE
instruction undoes this by popping information from the top of the stack into any
set of these registers. The ENTER and EXIT instructions deal with a larger
context which is used by both local and external procedures. The ENTER instruc-
tion is generally the first instruction executed in a procedure, and has the
function of completing the "activation record" or "stack frame". It saves the
Frame Pointer (FP) register onto the current stack, allocates a specified number
of bytes on the stack to be used for dynamic local variables, and sets up the
Frame Pointer as a base pointer for this area. It also pushes the contents of
any specified General-Purpose registers, as per the SAVE instruction. After
executing this instruction, the Frame Pointer can be used in the Frame Memory and
Frame Memory Relative addressing modes (Sections 4.4.8 and 4.4.3) to access both
these local variables and any parameters passed to this procedure. The EXIT
instruction is placed at the end of the procedure, undoing the action of the
matching ENTER instruction. It restores the contents of the specified General-
Purpose registers from the stack, discards the local variable space, and restores
the Frame Pointer, leaving the return address at the top of the stack for the
appropriate Return instruction.

Register/Stack Manipulation instructions provide the means to load, store and
adjust the contents of CPU dedicated registers. (Corresponding instructions for
manipulating dedicated Floating-Point and Memory Management registers are listed
in Sections 3.3 and 3.12.) The ADJSPi instruction provides the means to directly
adjust the current Stack Pointer register by the contents of any general operand
in order to allocate or purge space on the stack or for alignment purposes. The
BICPSR and BISPSR instructions allow specified bits in the PSR register to be
cleared or set without affecting the rest of the PSR. The LPRi and SPRi instruc-
tions load or store a specified dedicated register. The SETCFG instruction sets
up the CFG register (Section 2.3) to declare the presence of external interrupt
control and slave processors.

Three instructions provide miscellaneous functions. The NOP (No Operation)
instruction is a 1-byte instruction which does nothing except transfer control to
the next sequential instruction. The WAIT instruction causes instruction proces-
sing to be suspended until an interrupt occurs. The DIA instruction provides a
function similar to WAIT for hardware breakpointing purposes, but is not intended
for use in programminge.

NOTE: The instructions flagged with an asterisk ("*") have forms which are
privileged. The Illegal Operation trap, Trap(ILL), will occur if they are
attempted in User Mode (i.e., while the PSR U bit is set) . The BICPSRW
and BISPSRW instruction forms are privileged, as they may change the
high-order byte of the PSR, which is protected. The LPRi and SPRi
instructions are privileged when they ' reference either the INTBASE
register or the entire PSR. The SETCFG instruction is privileged always.
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3.12 Memory Management Instructions

The following is a list of the Memory Management instructions:

Instruction Mnemonic Forms Index
Load Memory Management IMR IMR
Register
Store Memory Management SMR SMR
Register
Validate Address for Reading RDVAL RDVAL
Validate Address for Writing  WRVAL WRVAL

Move Value from Supervisor

to User Space MOVSUB, MOVSUW, MOVSUD MOVSUi
Move Value from User
to Supervisor Space MOVUSB, MOVUSW, MOVUSD MOVUSi

The IMR and SMR instructions load and store the contents of Memory Management
registers (Section 2.5) as 32-bit values. The RDVAL instruction tests the
protection level of a specified user memory location to determine whether the
current user-mode program is allowed to read it. The WRVAL instruction tests
whether the current user is allowed to write into a specified memory location.
The MOVSUi instruction moves a byte, word, or double-word value from a specified
location in the Supervisor addressing space to a location in the User space, and
the MOVUSi instruction moves a value from User space to Supervisor space.

NOTES: 1. If the M bit in the CFG register has not been set (by the SETCFG
instruction), the IMR, SMR, RDVAL and WRVAL instructions will
generate the Undefined Instruction trap, Trap(UND).

2. All Memory Management instructions are privileged. If attempted
by a program running in User Mode (i.e., while the PSR U bit is
set), the Illegal Operation trap, Trap(ILL), will occur instead.



3.13 Custom Instructions

A set of instructions has been set aside for custom use. These instructions are
reserved for such use, and will not be defined otherwise by NSC.

A custom instruction starts with one of the following binary encodings as its
least-significant byte:

1. 00010110
2. 00110110
3. 10110110

Note that each of these corresponds to the first byte of a Floating-Point or
Memory Management instruction, the difference being that bit 3 is "0" instead of

"1".

If the C bit in the CFG register is cleared (by the SETCFG instruction), these
instructions cause the Undefined Instruction trap, Trap(UND). Since a trap
pushes the address of this first byte as the return address, the format and
length of the remainder of the instruction may be defined in any manner, as
required by the custom application.

If the C bit in the CFG register is set, these instructions are executed by an
external "Custom" Slave Processor. The remainder of each instruction must follow
the format of its corresponding Floating-Point or Memory Management instruction.
The custom instructions corresponding to Memory Management instructions are
privileged. 1In executing a custom instruction, the operand definitions and the
protocol followed in communicating with the Custom Slave are identical to those
for the corresponding Floating-Point or Memory Management instruction.

See the applicable CPU data sheet for details of the instruction formats and the
Slave Processor protocols used.
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Chapter 4

INSTRUCTION OPTIONS AND CONSTRUCTION

This chapter defines the options available in Series 32000 instructions,
these options are denoted in Chapter 5 (Instruction Set), and how the binary form

of an instruction is constructed based on the selections made.

how

The structure of an instruction is given in Chapter 5 by its format definition.

A typical format definition follows:

Line
Syntax: CMPf srcl, src2]
gen gen Operand
read.f read.f| ( Attributes:)

src1 CMPE

! ! ! !
! gen $ gen 10 0100O0!f!'1MT0111110!
e T R e s B B S L s SR B S S |
23 16 15 8 7 0

Basic

Instruction
Format

The notations used are defined in the following sections:

Syntax Line 4.1
Operand Attributes 4.2
Instruction Format 4.3

Other information presented in this chapter:
Addressing Modes 4.4

Construction Examples 4.5



4.1 Syntax Presentation

The Syntax line presents the instruction mnemonic, followed by a 1list of

operands,

as shown. Lower-case items indicate options to be specified by the

programmer.

< Operands )

Syntax: ADDi src, dest

Within the mnemonic, the following lower-case items may appear:

i

cond

Operands

An integer operation length suffix. It is specified by the programmer
as

= Byte (8-bit integer operation)
Word (16-bit integer operation)
Double~-Word (32-bit integer operation)

B
W
D

and defines the length of the operation to be performed. In arithmetic
operations, the carry and overflow tests use this specification to
determine which bit positions are to be checked. When an implied
operand of attribute "quick" appears (Section 4.2.3), it is internally
sign-extended to this length before use. The lengths of integer
general operands are usually taken from this length, but this depends
on their individual length attributes, Section 4.2.2.

A floating-point operation length suffix. It is specified by the
programmer as

F = Single-precision Floating (32-bit floating-point operation)
L Double-precision Long Floating (64-bit floating-point

operation)

and defines the length of the operation performed. The lengths of
floating-point general operands are usually taken from this length
specification, but this depends on their individual length attributes,
Section 4.2.2. In certain conversion instructions (e.g. ROUNDfi) both
integer and floating-point operation lengths may appear.

A condition code, as in the Conditional Branch instruction:
Syntax: Bcond dest

The specifications allowed and their interpretations are listed in the
instruction description.

are always given in lower case, and are to be specified by the

programmer according to the attributes appearing below them (Section 4.2).

The name given to an operand on the Syntax line serves to identify it in the

instruction description.

4-2
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4.2 Operand Attributes

Operands are defined in Chapter 5 by a set of attributes. These define what may
be specified for each operand, and exactly how any valid operand specification
will be interpreted when the instruction is executed.

A typical set of attributes is shown below:

Syntax: ADDQi src, dest
quick gen

//////”r rmw.i
(:Attributes
Access Length
Class

Some operands listed as part of the instruction syntax are implied, meaning that
their locations are not determined from a general choice of addressing modes. An
implied operand is identified by the attribute "reg", "quick", "short", "imm" or
"disp"; i.e., anything except "gen". For the explanations of implied operand
attributes, see Section 4.2.3.

Most Series 32000 operands, however, are general, meaning that a general choice
of addressing modes (Section 4.4) may be used to specify their locations.
General operands are identified by the attribute "gen". A general operand has
the additional attributes of an access class and also a length where relevant.

The access class attribute serves to define all cases of addressing mode usage
including exceptional cases whose effects (or even legality) might not otherwise
be obvious. The possible access classes for a general operand are read, write,
rmw, addr and regaddr. Three addressing modes are affected by the access class:
Register, Immediate and Top of Stack, as shown in Table 4-1 and described in
Section 4.2.1.

The length attribute defines a general operand's data type and its size in bytes
(see Section 4.2.2).

An operand with attribute i is an integer of the size given as the integer
operation length by the programmer. An operand with attribute 2i is twice this
size. An operand with attribute B, W or D is a byte, word or double-word
integer, respectively, regardless of the operation length.

An operand with length attribute f is a floating-point value of the size given as
the floating-point operation length by the programmer. An operand with length
attribute F or L is a single-precision or double-precision floating-point value,
respectively, regardless of the operation length.



4.2.1 Access Classes

Computer architectures usually have exceptional cases of operand reference based
on the context of the instruction making the reference. For example, if an
architecture allows references to registers as general operands, and provides a
Jump instruction specifying a general destination, an obvious gquestion becomes
whether in this context (Jump) it is still legal to specify a register.

Rather than defining the interpretations of operand references on an instruction-
by-instruction basis, the Series 32000 architecture defines five standard con-
texts (access classes) within which an Series 32000 family CPU will interpret a
reference to a general operand. Each instruction assigns one access class to
each of its general operands, which in turn fully defines the action of any

addressing mode in referencing that operand.

Only three addressing modes have interpretations which are affected by the access
class of an operand. These are Register, Immediate and Top of Stack. The five
access classes, defined below, are read, write, rmw, addr and regaddr. See also
Table 4-1.

read: The addressing modes are interpreted in the context of an operand being
read but not rewritten. If Register mode is used, the specified
register contains the operand. Immediate mode is 1legal only for
operands of this access class. If Top of Stack mode is specified, the
Stack Pointer is post-incremented by the number of bytes corresponding
to the length of the operand (as determined from its length attribute,
Section 4.2.2), thus "popping" it from the stack.

write: The addressing modes are interpreted in the context of an operand being
written without having been read. If Register mode is used, the
specified register receives the operand. Immediate mode is undefined
for this access class. If Top of Stack mode is specified, the Stack
Pointer is pre-decremented by the number of bytes corresponding to the
length of the operand (as determined from its 1length attribute,
Section 4.2.2), thus "pushing" it onto the stack.

rmw: Read-Modify-Write. The addressing modes are interpreted in the context
of an operand being read, modified and rewritten to the same location.
If Register mode is used, the specified register contains the operand.
Immediate mode is undefined for this access class. If Top of Stack
mode is specified, the Stack Pointer provides the address of the
operand, but is not altered.
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Table 4-1 Addressing Mode Actions vs. Access Class
Access Class
Addressing
Mode read write rmw addr regaddr
Register Rn, Fn Rn, Fn Rn, Fn (Rn) Rn, Fn
Immediate legal undefined undefined undefined undefined
Top of Stack Pop Push (sP) (sP) (SP)

NOTES: 1.

The notations (Rn) and (SP) signify use of the enclosed

register as a pointer.

The register is not altered.

Using Scaled Indexing in an addressing mode overrides the
access class and forces it to "addr".




addr: Address. The addressing modes are interpreted in the context of an
operand which cannot be held in a register, or of an effective address
calculation which does not correspond to an operand being fetched as
data. Examples of this context are ADDR A,B (place the effective
address of A into B), JUMP X (place the effective address of X into
the Program Counter) or any addressing mode using Scaled Indexing
(since arrays cannot be held in registers; see Table 4-1). If Register
mode is used, the operand is in memory, and the specified register
contains its address. Immediate mode is undefined for this access
class. If Top of Stack mode is specified, the Stack Pointer provides
the address of the operand, but is not altered.

Note: The addr access class does not define the use to which an
operand is put, but only the context in which the addressing modes are
interpreted. An addr operand may be read, written, or neither read nor
written, depending on the instruction being executed.

regaddr: Register/Address. The addressing modes are interpreted in the context
of designating a base for locating a data item of nonstandard size
and/or alignment. An example of this context is the operand B in the
instruction TBITW A,B (test the bit which is A bits from the beginning
of base location B). If Register mode is used, the data item is held
within the specified register. Immediate mode is undefined for this
access class. If Top of Stack mode is specified, the Stack Pointer
provides the address of the base, but is not altered.

Note: The regaddr access class does not define the use to which an
operand is put, but only defines the context in which the addressing
modes are interpreted. Information at the location given in a regaddr
context may be read, written, or neither read nor written, depending on
the instruction being executed.

4.2.2 Length Attributes
The length attribute of a general operand defines its data type and its length
(in bytes). Operands with length attribute B, W, D, i or 2i are integers.

Operands with length attribute F, L or f are floating-point values.

The length in bytes of an operand affects the following three addressing modes:

Register: If the 1length of an operand is smaller than the designated
General-Purpose register, it is only the low-order portion of the
register which is referenced or modified. The rest of the

register is unchanged. Operands with length attribute 2i are a
special case; see Section 4.2.2.1 below.

Immediate: The length of the value held within the binary instruction format
matches the length in bytes of the operand.

@
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Top of Stack: If the access class attribute (Section 4.2.1) indicates that the
Stack Pointer is to be modified, it is modified by the operand
length in bytes.

4.2.2.1 Integer Length Attributes

The length attributes which identify an integer are B, W, D, i and 2i. For
integers, the Register addressing mode assumes that the General-Purpose registers
(RO-R7) are to be used. Floating-Point registers cannot be specified for integer
operands. The integer length attributes are defined as follows:

B The operand is a 1-byte integer.
W The operand is a 2-byte (word) integer.
D The operand is a 4-byte (double-word) integer.

i The operand is either one, two, or four bytes in length, depending on
the operation length suffix (B, W or D: Sectidn 4.1) appended to the
instruction mnemonic by the programmer.

2i The operand is twice the length given as the operation length suffix
(Section 4.1) appended to the instruction mnemonic by the programmer.

The MEI and DEI instructions (Multiply/Divide Extended Integer) present special
cases in which operands with length attribute 2i can be held in registers. If an
operand with length attribute 2i is specified as being within a register, it
occupies a pair of General-Purpose registers (RO and R1, R2 and R3, R4 and R5, or
R6 and R7), and the even-numbered register of the pair must be specified as the
operand location. The operand is held with its least-significant half in the
even-numbered register (right-justified) and its most-significant half in the
odd-numbered register (also right-justified). Any portions of the two registers
not used to hold the operand are neither referenced nor modified.



4.2.2.2 Floating-Point Length Attributes

The length attributes which identify a floating-point operand are F, L and f£f.
For floating-point operands the Register addressing mode assumes that the
Floating-Point registers (F0-F7) are to be used. General-Purpose registers
cannot be specified for floating-point operands. The floating-point 1length
attributes are defined as follows:

F The operand is a 4-byte single-precision floating-point value.

L The operand is an 8-byte double-precision ("Long") floating-point
value. If the Register addressing mode is specified for an operand of
this length, then a pair of registers (F0 and F1, F2 and F3, F4 and F5,
or F6 and F7) holds the operand, and only an even-numbered register may
be specified. The low-order half of the operand is then held in the
specified even-numbered register, and the high-order half is held in
the odd-numbered register.

f The operand is either a single-precision or double-precision floating-
point value, depending on the operation length suffix (F or L, Section
4.1) appended to the instruction mnemonic by the programmer. See the
description of "L" above for the format of a double-precision operand
within registers.

O
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4.2.3

Implied Operand Attributes

Implied operands are specified without using addressing modes. Their attributes
define how they may be specified.

reqg:

quick:

short:

imm:

disp:

The operand location is a General-Purpose register (RO-R7). Any
General-Purpose register may be specified. The entire register is
always used and/or modified by the instruction. The register number is
encoded in the binary instruction format within a 3-bit field marked
"reg".

The operand is a signed, 4-bit immediate value. Its range is -8 to +7.
Before use, it is internally sign-extended to the length given by the
operation length suffix appended to the instruction mnemonic. A quick
operand is encoded in the binary instruction format within a 4-bit
field marked "quick".

The operand occupies a 4-bit field within the binary instruction
format. The interpretation of the field depends on the instruction.

The operand is a 1-byte immediate value, appended to the instruction
following any addressing extensions. 1Its interpretation is determined
by the instruction.

The operand is an immediate signed integer value, encoded as a
displacement field and appended to the instruction following any
addressing extensions. Its use is determined by the instruction.

A displacement field is stored with the most-significant byte at the
lowest address. Its format is determined by its most-significant bits
as shown below.

Fm——t +
10! 7-bit signed value { Range: =64...+63
+ + + + + + + F———t
1 0! 14-bit !
R e Signed ———t R.ange: -81 92. . o+8191
1 value !
D B et Balaeh & + + + +
11 11 !
B ———+ Range: currently
! 30-bit ] -16,777,215...+16,777,215.
tm—— signed ———— Values outside this range
! value ! are currently undefined.
Fm——— ' ——t

! 1

-
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4.3 Binary Instruction Format

The binary format of an Series 32000 instruction is shown in Figure 4-1. It is
divided into two sections.

1.

The Basic Instruction portion defines the operation performed and the
number and kinds of operands. It is presented in Chapter 5
individually for each instruction, using field nomenclature as defined
in Section 4.3.1 below.

Extension fields are optionally appended as defined by the instruction
and the addressing modes chosen by the programmer. These extensions
fall into a general instruction format, defined in Section 4.3.2.

Because the Series 32000 family implements a full two-address architecture, most
instructions have two general operands (with attribute "gen", Section 4.2). To
distinguish between them, the first general operand appearing in the Syntax line
of an instruction description will be designated Operand A and the second

Ogerand B.
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OPCODE r,
reg

Syntax:

X

gen

Operand A |

(first gen)

Y z,

gen disp

L

Basic Instruction

Operand B
(second gen)

Basic Instruction

Y

Index Byte (Operand A)
if Operand A is indexed

Index Byte (Operand B)
if Operand B is indexed

Addressing Extension (A)
Immediate value, or
disp, or

displ followed by disp2.

Addressing Extension (B)
Immediate value, or
disp, or
displ followed by disp2

Implied Operands (imm or disp)
in the order listed
on Syntax line

/\.7

1 1
A )
T T
i =
¥ i
|
7T 1
A ~
T T
- -
]
& P
] 1
| IS !
SR—
]
i
1
O{J ~~
I ~
1
1
1
1
| S —— {

Increasing

1.2 or 3 Address

bytes

Extensions,
- as
required.

EZ-01-0



4.3.1 Basic Instruction

The Basic Instruction portion defines the operation performed and the addressing
modes used for referencing general operands, and provides fields within it for
holding all implied operands with attribute reg, quick or short (Section 4.2.3).
It is one, two or three bytes in length.

The format of the Basic Instruction is diagrammed for each instruction under the
Syntax line of the instruction description. The format used for storing the
Basic Instruction in memory is the same as for data elements; that is, the
least-significant byte appears first, at the lowest address. Fields within the
Basic Instruction are presented as defined below.

4.3.1.1 Operation Code Fields

Operation code fields are presented explicitly in binary. All fields presented
in this manner are derived from the instruction mnemonic and define the basic

operation to be performed.

4.3.1.2 Operation Length Fields: i and £

Operation Length fields define the length to which calculations are performed
within a basic data type (integer or floating point). They also define the
lengths of most general operands (indirectly, through each operand's own length
attribute, Section 4.2.2). They are derived from the Operation Length mnemonic
suffix (Section 4.1) chosen by the programmer, as shown below.

Mnemonic
Field suffix Encoding
i B 00
W 01
D 11
£ F 1
L 0

4.3.1.3 General Addressing Mode Fields: gen

These are 5-bit fields which define the addressing mode used to access each
operand. The name of the operand from the Syntax line appears above the field.
The encodings of these fields are given in the definitions of the addressing
modes, Section 4.4.
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4.3.1.4 Implied Operand Fields: reg, quick, short

These fields hold the necessary information for implied operands which are
defined with the corresponding attribute (reg, quick or short; Section 4.2.3).
The name of the operand from the Syntax line appears above the field.

A reg field is a 3-bit field holding a register number (0-7).
A quick field is a 4-bit field holding a signed value (range -8 to +7).

A short field is a 4-bit field holding information which is required by the
individual instruction. Its contents are defined in the instruction
description.

4.3.2 Extension Fields

The following fields extend the length of the instruction beyond the Basic
Instruction field. They appear as required by the individual instruction or by
the addressing modes chosen for specifying its general operands.

4.3.2.1 Index Bytes

The first form of extension is in the form of Index Bytes. The instruction is
extended in this manner whenever Scaled Indexing (Section 4.4.9) is used in
specifying a general operand. Either or both of the general operands may be
specified using Scaled Indexing. If both operands are specified in this form,
then the Index Byte for Operand A appears before the Index Byte for Operand B.
See Figure 4-1. The format of an Index Byte is given in the definition of Scaled
Indexing, Section 4.4.9.

4.3.2.2 Addressing Extensions

An addressing extension is appended for each general operand as required. Its
contents depend on the addressing mode chosen for each. See Section 4.4 for the
usages of addressing extensions in addressing modes. The addressing extension
for operand A appears before the one for operand B (Figure 4-1).

Addressing extensions are constructed from two basic elements: displacement:
fields and immediate values.

NOTE: Unlike other values in memory, addressing extensions are ordered with the
most-significant byte at the lowest address.




An addressing extension contains either:
1. One immediate value, or

2. One displacement field, 1labelled "disp" in the addressing mode
definitions (Section 4.4), or

3. Two displacement fields, labelled "disp1" and "disp2". In this form,
disp1 is appended first, followed by disp2.

If a Register or Top of Stack addressing mode is used to specify a general
operand, no addressing extension appears for that operand.

A displacement field holds a signed two's-complement addressing constant. It is
stored with the most-significant byte at the lowest address. Its length is
determined by its most-significant bits as shown below.

o+ 4 s

't 0! 7-bit signed value ! Range: =—64...+63

FUSOVESPINSIT SN FEEOIS SRR SRR BEGS SN

e +
t1 0! 14-bit !
=t signed —-——t Range: =-8192...+8191
! value !

s Rttt Sttt &

' 11 !

tm———tm——t —-————t Range: currently

! 30-bit ! -16,777,215...+16,777,215.
to——— signed —-——=t Values outside this range
! value ! are currently undefined.
Fm——— ———t

! !

e Tt e B L el

An immediate value appears as an addressing extension only when the Immediate
addressing mode is specified (Section 4.4.4). The length of the wvalue is
determined from the operand's length attribute (Section 4.2.2). The value is
ordered with its most~significant byte at the lowest address.

4.3.2.3 Implied Operand Extensions: imm, disp

Implied operands, of attribute "imm" or "disp" (Section 4.2.3), appear last,
after all addressing extensions. If there is more than one imm or disp operand
appearing in the instruction, then the operands are appended in the order in
which they are listed on the Syntax line.
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4.4 Series 32000 Addressing Modes

Any general operand (Section 4.2) may be specified by the programmer using a
general choice of addressing modes. This section defines addressing mode syntax,
functions and encodings.

Table 4-2 lists the addressing modes provided for specifying a general operand.
It also serves as an index to this section. The Encoding column gives the binary
encoding used in a gen field (Section 4.3.1.3) to select each mode. The Name
column gives the name of the addressing mode as used in this manual, and the
Syntax column shows the syntax used in assembly language to express it. (Note:
What is given is only the lowest level of expression, which most directly relates
to the action of the addressing mode. See the applicable assembler manual for
full details of expression syntax and symbolic features.)

Scaled Indexing is an option available as part of any addressing mode except
Immediate. It does not stand alone as an addressing mode, but is listed with the
addressing modes because of the binary encodings used to select the option.



Table 4-2 Series 32000 Addressing Modes

Encoding Name Syntax
Register 00000 Register 0 RO or FO
00001 Register 1 R1 or F1
00010 Register 2 R2 or F2
00011 Register 3 R3 or F3
00100 Register 4 R4 or F4
00101 Register 5 R5 or F5
00110 Register 6 R6 or F6
00111 Register 7 R7 or F7
Register Relative 01000 Register 0 Relative disp(RO)
01001 Register 1 Relative disp(R1)
01010 Register 2 Relative disp(R2)
01011 Register 3 Relative disp(R3)
01100 Register 4 Relative disp(R4)
01101 Register 5 Relative disp(R5)
01110 Register 6 Relative disp(R6)
01111 Register 7 Relative disp(R7)
Memory Relative 10000 Frame Memory Relative disp2(disp1(FP))
10001 Stack Memory Relative disp2(disp1(SP))
10010 Static Memory Relative disp2(disp1(SB))
(reserved) 10011 (Reserved for
future use.)
Immediate 10100 Immediate value
Absolute 10101 Absolute @disp
External 10110 External EXT(disp1)+disp2
Top of Stack 10111 Top of Stack TOS
Memory Space 11000 Frame Memory disp(FP)
11001 Stack Memory disp(SP)
11010 Static Memory disp(SB)
11011 Program Memory * + disp
Scaled Indexing 11100 Byte Indexed basemode [Rn:B]
11101 Word Indexed basemode[Rn:W]
11110 Double-~Word Indexed basemode [Rn: D]
11111 Quad-Word Indexed basemode[Rn: Q]

@,
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4.4.1

Register Modes
Mode Syntax Encoding
Register 0 RO or FO 00000
Register 1 R1 or F1 00001
Register 2 R2 or F2 00010
Register 3 R3 or F3 ) 00011
Register 4 R4 or F4 00100
Register 5 R5 or F5 00101
Register 6 R6 or F6 00110
Register 7 R7 or F7 00111
Extensions
None.

The interpretation of these modes is formally defined below. However, rule 6
defines the general case, which is that the specified General-Purpose register
(R0-R7) holds the operand.

The following rules are listed in order of decreasing precedence. Lower-numbered

rules

1.

take precedence over higher-numbered rules.

If the access class of the operand (Section 4.2.1) is "addr", then the
operand is in memory. The effective address of the operand is held in the
specified General-Purpose register.

If Scaled Indexing is used, the access class of the operand is redefined as
"addr", and rule 1 above applies.

If the operand length attribute (Section 4.2.2) is "2i", then a pair of
General~-Purpose registers (RO and R1, R2 and R3, R4 and R5, or R6 and R7)
holds the operand. The even-numbered register of the pair must be speci-
fied, and if the odd-numbered register is specified the location of the
operand is undefined. The least-significant half of the operand is held in
the low-order portion of the even-numbered register, and the remaining
portion of the register is neither used nor affected. The most-significant
half of the operand is held in the low-order portion of the odd-numbered
register, and any remaining portion of the register is neither used nor
affected.

4-17



If the operand length derived from its length attribute (Section 4.2.2) is
single~precision floating-point, then the operand is held in the specified
Floating-Point register (F0-F7).

If the operand length derived from its length attribute (Section 4.2.2) is
double-precision floating-point, then the operand is held in a pair of
Floating-Point registers (F0 and F1, F2 and F3, F4 and F5, or F6 and F7).
The even-numbered register of the pair must be specified, and if the odd-
numbered register is specified the operand location is undefined. The
least-significant half of the operand is held in the even-numbered register
and the most-significant half is held in the odd-numbered register.

When none of the above exceptions apply, the operand is an integer held
within the specified General-Purpose register (RO-R7). If the operand
length derived from its length attribute is shorter than the full 32-bit
length of the register, then the operand occupies the low-order portion of
the register, and the remaining portion of the register is neither used nor
affected.

4-18
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Register Relative Modes

Mode Syntax Encoding
Register 0 Relative disp(RO) 01000
Register 1 Relative disp(R1) 01001
Register 2 Relative disp(R2) 01010
Register 3 Relative disp(R3) 01011
Register 4 Relative disp(R4) 01100
Register 5 Relative disp(R5) 01101
Register 6 Relative disp(R6) 01110
Register 7 Relative disp(R7) 01111

Extensions

One displacement field:
disp.

The operand is in memory. Its effective address is the sum of the 32-bit con-~
tents of the specified General-Purpose register (R0-R7) and the displacement
value sign—extended to 32 bits.



4.4.3 Memory Relative Modes

Mode Syntax Encoding

Frame Memory Relative disp2(disp1(FP)) 10000
Stack Memory Relative disp2(disp1(SP)) 10001
Static Memory Relative disp2(disp1(SB)) 10010
Extensions

Two displacement
~ fields: disp1l
followed by disp2.

The operand is in memory, at the address given by the sum of disp2 (sign—extended
to 32 bits) and a 32-bit pointer in memory. The address of this pointer is
generated by adding disp1 (sign-extended to 32 bits) and the contents of the
specified register (FP, SP or SB). The symbol "SP" means the stack pointer which
is currently selected by the S bit in the PSR (Section 2.2).

NOTE: The Stack Memory Relative mode uses the contents of the selected stack
pointer as it was at the beginning of the instruction. The effective
address is therefore independent of any changes made to the stack pointer
by any Top of Stack mode appearing in the same instruction.

@



4.4.4 Immediate Mode

Mode Syntax Encoding
Immediate value 10100
Extensions

The value, placed
most-significant
byte first.

The operand value is input from the addressing extension portion of the instruc-
tion. The value appears most-significant byte first. Its length in bytes is

determined from the operand length attribute (Section 4.2.2). Floating-point as
well as integer instructions may use Immediate mode.

NOTES : 1. Immediate mode is legal only for operands of access class "read".
Any other use is undefined.

2. Immediate mode may not be used as the base mode for Scaled
Indexing.
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4.4.5 Absolute Mode

Mode Syntax Encoding
Absolute Q@address 10101
Extensions

One displacement
field: address.

The absolute address is specified. This address is encoded in the binary
instruction as a displacement field of any length required to hold the address.

NOTE: Negative addresses are undefined.
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4.4.6 External Mode

Mode Syntax Encoding
External EXT(disp1)+disp2 10110
or
EXT (disp1)
Extensions

Two displacement
fields: disp1
followed by disp2.

If disp2 is omitted
in assembly language,
it must still be
included as a disp2
field containing zero.

The External addressing mode provides the means for a software module to access
data within a data space outside of that module. The operand is referenced
through the Link Table of the current module (Section 2.7.3). The value disp1 is
a Link Table entry number, and disp2 is a final displacement added to the address
provided from that Link Table entry.

The operand is in memory, at the address given by the sum of disp2 (sign-extended
to 32 bits) and a 32-bit pointer in the current Link Table. The address of this
pointer is generated by adding disp1, multiplied by four, and the contents of the
32-bit value at memory address MOD + 4. "MOD" is the contents of the MOD regis-
ter, interpreted as a 16-bit unsigned number.



4. 4.7

Top of Stack Mode

Mode Syntax Encoding
Top of Stack TOS 10111
Extensions
None.

The operand is in memory, at the top of the current stack. It is pushed, popped,
or neither pushed nor popped, as appropriate to the usage of the operand.

The stack pointer used is the stack pointer that is currently selected by the S
bit in the PSR (Section 2.2).

The stack pointer is used by Top of Stack mode according to the access class of
the operand. The rules below are listed in order of decreasing precedence.
Lower-numbered rules take precedence over higher-numbered rules.

1.

If the operand is of access class "rmw", "addr" or "regaddr", then the
effective address of the operand is given by the contents of the stack
pointer, and no increment or decrement is performed.

If Scaled Indexing is used, the access class of the operand is redefined as
"addr", and rule 1 above applies.

If the operand is of access class "read", the operand is read from the
address given by the contents of the stack pointer. The stack pointer is
then incremented by the length in bytes of the operand, as determined from
its length attribute (Section 4.2.2).

If the operand is of access class "write", the stack pointer is decremented
by the length in bytes of the operand, as determined from its length attri-
bute (Section 4.2.2). The operand is then written to the address given by
the new contents of the stack pointer.

NOTES: 1. If Top of Stack mode is used for both general operands of an

instruction, the operands are accessed and the stack pointer modi-
fied in left-to-right operand order. The rightmost addressing
mode uses as its initial stack pointer value the contents of the
stack pointer after any increment or decrement has been performed
by the leftmost addressing mode.

2. The Stack Memory and Stack Memory Relative modes use as their
stack pointer value the contents of the selected stack pointer as
they were at the beginning of the instruction. The actions of
these modes are therefore independent of any modifications made
to the stack pointer by any Top of Stack mode appearing within the
same instruction.
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4.4.8. Memory Space Modes

Mode Syntax Encoding
Frame Memory disp(FP) 11000
Stack Memory disp(SP) 11001
Static Memory disp(SB) 11010

Program Memory * + disp 11011
Extensions

One displacement
field: disp.

The operand is in memory, at the address given by the sum of the contents of the
specified register and the displacement value sign-extended to 32 bits.

The symbol "SP" means the stack pointer (SP0 or SP1) which is currently selected
by the S bit in the PSR (Section 2.2). The symbol "*" means the contents of the
Program Counter.

NOTES: 1. The Stack Memory mode uses the contents of the selected stack
pointer as it was at the beginning of the instruction. The
effective address is therefore independent of any changes to the
stack pointer contents made by any Top of Stack mode occurring in
the same instruction.

2. The Program Counter always contains the address of the first byte
of the instruction being executed.
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4.4.9 Scaled Indexing -
()
Mode Syntax Encoding

Byte Indexed basemode [Rn:B] 11100

Word Indexed basemode[Rn:W] 11101

Double-Word Indexed basemode [Rn:D] 11110

Quad-Word Indexed basemode[Rn:Q] 11111

Extensions

basemode = base addressing mode 1. Index Byte.
(see below)
2. Any extensions ~-
Rn = any General-Purpose Register, required by <\>

used as the index register. basemode.

Any addressing mode except Immediate is allowed to include indexing by the
contents of any General-Purpose register (R0-R7), interpreted as a signed 32-bit
integer. The index value is scaled (multiplied) by a factor of 1, 2, 4 or 8
before use, so that it can be used as an element number for an array of 1-, 2-,
4- or 8-byte elements. An indexed addressing expression has the form

basemode [Rn:1]

where basemode is an addressing mode expression,

)

Rn is any General-Purpose register, and
1 is an element length qualifier, chosen from:
B = Byte, scale factor = 1 (:i)
W = Word, scale factor = 2
D = Double-word, scale factor = 4
Q = Quad-word, scale factor = 8 .

In the binary instruction format, addressing modes with Scaled Indexing are
encoded within the Basic Instruction gen field as one of four special codes which
specify only the length qualifier (see table above). The basemode and Rn compo-
nents are specified in an Index Byte appended to the Basic Instruction. See
Section 4.3 for the position of an Index Byte in the general instruction format.
The Index Byte has the following format:

! basemode! Rn !

O
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DEDED

Any further addressing extensions required by basemode are appended as given in
Section 4.3.2.2, in exactly the same manner as if basemode were not indexed.

NOTES:

1.

Any operand specified using Scaled Indexing is redefined as being
of access class "addr" regardless of the operand's access class in
the instruction definition. This affects the interpretation of
basemodes Register and Top of Stack, and makes the use of an
Immediate basemode illegal. See Section 4.2.1.

Scaled Indexing may be applied only once in an addressing expres-

sion. Basemode is therefore not allowed to include Scaled
Indexing within itself.
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4.5 Constructing Complete Binary Instructions: Some Examples

The following examples illustrate the process of assembling the binary form of an
Series 32000 instruction from its assembly-language form.

Example 1:
The simple example below is generated from the Move instruction (MOVi) .
MOVB RO, R1
This instruction copies the low-order byte of register R0 to the low-order byte

of register R1. The format definition of the MOVi instruction is taken from
Chapter 5 as shown below.

Syntax: MOVi src, dest MOVB
gen gen MOVW
read.i write.i MOVD

! src ! dest ! MOVi !
+== + + it
! gen ! gen 10101 it
|ttt ettt = L e e = |
15 8 7 0

In this example, the lower-case items in the Syntax line have been specified by
the programmer as follows:

i = B (Byte operation length, Section 4.1)
src = RO (Register 0 addressing mode, Section 4.4.1)
dest = R1 (Register 1 addressing mode, Section 4.4.1)

To complete the Basic Instruction, the gen fields for the two general operands
src and dest and the i field for the operation length must be provided. The
encoding for the src operand (RO Register addressing mode) is 00000. The
encoding for the dest operand (R1 Register addressing mode) is 00001. The
encoding for the operation length (B) is 00. Thus, the Basic Instruction is:

! RO ! R1

1
- + + —t———t and appears in memory as the two
'10000O0!00O0O01!010 110 0! consecutive bytes: 54 00 (Hex).
I ek i ek et Sl Bl o e e e e e |
15 8 7 0

The Register addressing modes RO and R1 require no addressing extensions.
Therefore, the Basic Instruction above is the complete binary form of the example
instruction.
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Example 2:
The next example is generated from the JUMP instruction.
JUMP 0(4(sSB))
This instruction performs an indirect jump through a 32-bit pointer in memory.
The pointer's address is calculated by adding 4 to the contents of the SB

register.

The format definition of the JUMP instruction is:

Syntax: JUMP dest

gen
addr
! dest ! JUMP !
Fommm e m N +
! gen 10100111111 1!
R i e e el e e e
15 8 7 0

This instruction has only one operand, the general operand dest, which is speci-
fied by the programmer with the addressing expression 0(4(SB)). This form of
addressing expression specifies that the Static Memory Relative addressing mode
(Section 4.4.3) is to be used to calculate the address to which the instruction
will jump. The code for this addressing mode is placed in the gen field as
binary 10010. Thus, the Basic Instruction is:

Static !

!

!Mem. Rel.! JUMP !

Fm——— + +
1100100100111 111 11
R Rt e ot e e R e e e |
15 8 7 0

The Memory Relative addressing modes require that two displacements be appended
to the Basic Instruction. These are designated disp1 and disp2. From the
expression provided in the assembly-language example, the displacement values are
to be:

disp1 = 4, and
disp2 0 .

(continued)
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From the format given for a displacement field (Section 4.3.2.2), we see that a
small value can be represented in either one, two or four bytes. Obviously, we
wish to choose the smallest field which works, so we will use the 1-byte format
for each displacement field.

Appending the two displacements to the Basic Instruction, we get the complete
binary instruction as shown below.

! Static !

t1T 0010010011111 11!
e e K K e 2ot sl s s w2l S el Sl S

15 8 7 0
disp1: Fotm e —————— +
1010 000 100!
lmtm ettt |

7 0
disp2: tmtmm—————————— +
10!0 00 000 O!
lm ot e pm == |

7 0

The complete binary instruction is represented in consecutive memory bytes as

7F 92 04 00 (Hex).
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Example 3:
The following example is generated from the ADDi instruction.
ADDD EXT(8)+80, =4(FP)

This instruction adds a 32-bit value from the memory location specified as
EXT(8)+80 to a 32-bit value at the memory location specified as =4(FP).

The format definition of the ADDi instruction is:

Syntax: ADDi src, dest ADDB
gen gen ADDW
read.i rmw.i ADDD

! src ! dest ! ADDi !
+- + + —————t———t
! gen ! gen 000 0! i!
| =tmtm ettt mtmdm e pm e pm e fem o= |
15 8 7 0

This instruction has two general operands. For purposes of constructing its
binary form, the src operand is labeled operand A and the dest operand is
labeled operand B, as discussed in Section 4.3.

The operation length suffix is D, encoded as 11 in the i field. The src operand
is specified using the External addressing mode (Section 4.4.6), which is encoded
in the binary instruction as 10110 in the corresponding gen field. The dest
operand is specified using the Frame Memory addressing mode (Section 4.4.8),
which is encoded in the corresponding gen field as 11000. The Basic Instruction
appears then as shown below.

Frame
! External! Memory ! ADDD !
+ ————t ——t—————— tm——t
{101 10!11000!00O0O0! 1!
L e e e e e L e s ek R A |
15 8 7 0

(continued)
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Since neither operand uses Scaled Indexing, the first extensions appended to the
Basic Instruction are the addressing extension fields required by the External
addressing mode used to specify the src operand (Operand A). The External
addressing mode requires two displacement fields: disp! (containing 8) followed
by disp2 (containing 80). The disp1 displacement value can be held in a
single-byte displacement field. The disp2 displacement value cannot, as it is
outside the range (-64 to +63) which can be represented in a signed 7-bit number.
It can, however, be held in a two-byte displacement field. Appending the
displacement fields for Operand A yields the result shown below.

Frame

! External! Memory ! ADDD !
'10110!1000!0000O0!' 1!
R e Lt et et aat B TR Sl et
15 8 7 0
! 8 !

Disp1 (A): 10!0 00100 O!
e e o ey

7 0

! 80 !
+em—t +

Disp2 (A): t1 0!0 00 00 O!
B L Rt s it R

10101000 0!

[ s ek et S |

7 0

(continued)
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DEDED,

After the addressing extensions required for Operand A, the addressing extensions
required for Operand B are appended. Since Operand B (the dest operand) is
specified using the Frame Memory addressing mode, there is one displacement field
required, containing the value -4. This value is within the range -64 to +63,
and so it can be held in the single-byte displacement format. It is appended as

shown:
Frame

! External! Memory ! ADDD !
+ + Fo—————— Fe——t
'110110!11000!0000O0!1 1!
ettt =tmtmtetmtm e pmf e == |
15 8 7 0

! 8 !
+-+ +

Disp1 (A): 10!0 00 100 0!
e fm e = |

7 0

! 80 !
Fom e +

Disp2 (A): !110!0 0000 O!
e e ek Sk il BT

10101000 0!

R e e e e ek |

7 0

! -4 !

Disp (B): 10!111110 0!
V= e = |

7 0

The complete instruction appears in consecutive memory bytes as:

03 B6 08 80 50 7C (Hex).
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Example 4:

A final example of how an instruction is assembled uses the Extract Field (EXTi)
instruction.

EXTB RO, 10(sB), 0(sB)[R1:B], 5
This instruction copies a 5-bit field from a point in memory determined by a bit

offset (contained in RO) from the address 10(SB) to the address specified by
0(SB) [R1:B]. The format definition of the Basic Instruction is:

Syntax: EXTi offset, Dbase, dest, length EXTB
reg gen gen disp EXTW
regaddr write.i EXTD
of f-

! Dbase ! dest ! set ! EXTi !

Fmm o m Fm———— Fofm -t - +

! gen ! gen ! reg 10! i 100 101110!

T T el Sk o B e e e B e e e e e

23 16 15 8 7 0

In this more complex instruction, there are several items which must be placed in
the Basic Instruction. These are the addressing modes specified by the expres-
sions 10(SB) and 0(SB)[R1:B], the i field corresponding to the B operation length
suffix, and the reg field corresponding to the reg operand specified as RO. The
code for the expression 10(SB), specifying the Static Memory addressing mode, is
11010. The code for the expression 0(SB)[R1:B], specifying the Static Memory
addressing mode with Scaled Indexing (scale factor = 1), is 11100. (Note that
when Scaled Indexing is used, it is the code for Scaled Indexing which is placed
in the Basic Instruction. See Section 4.4.9.) The i field is 00, for the B
operation length suffix. The reg field is 000, for RO. Thus, the Basic
Instruction is:

Static Byte
! Memory ! Indexed ! RO ! EXTB !
+ + + ot +
'171010!11100!000!0!00!00101110!
| =t m b= fmm Jm o pm bbb b = o e b=t
23 16 15 8 7 0

(continued)
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DEDAD.

The expression 10(SB) specifies Operand A and 0(SB)[R1:B] specifies Operand B.
Because it is indexed, Operand B requires an Index Byte. The Index Byte is the
first extension to be appended to the Basic Instruction. It contains the code
for the basemode 0(SB) and the register number for RI1. The basemode (Static
Memory) is encoded as 11010 and the register number is encoded for R1 as 001.

Static Byte
! Memory ! Indexed ! RO ! EXTB !
Fom—————— - + -t + +
'11010!1100!000!0!00!00101110!
l=t=t=t=tmt=tmt= |ttt e e L fmfmpmf = fmfm = |
23 16 15 8 7 0
Static

! Memory ! R1 !
e Fmm——— +

Index Byte (B): 1110 10!00 1!
o= = p= |

7 0

(continued)



The next extensions to be appended are the addressing extensions required by the
addressing modes for the general operands. Since Operand A is specified using
the Static Memory addressing mode, it requires one displacement field, containing
10. This displacement is placed in single-byte format after the Index Byte.

The Static Memory basemode 0(SB) for Operand B requires one displacement field
containing 0. This displacement is placed in single-byte format after the

displacement field for Operand A.

Static Byte

N
O©

/,—\
AN

! Memory ! Indexed ! RO ! EXTB !
'11010! 1100!000!0!t00!00101110!
I e ek ks R B e B B S e e e N L L e e el el et |
23 16 15 8 7 0
Static
! Memory ! R1 !
Index Byte (B): 1110 10!00 1!
=ttt mtmt=t=|
7 0
! 10 !
+=+ +
Disp (A): 1010 0 0101 0!
I e s et |
7 0
! 0 !
+=+ +
Disp (B): 10!0 00 00O O!
I e ik it et R R Y |
7 0
(continued)
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Finally, the length operand (specified as 5) is an implied displacement which is
appended after all addressing extensions. It also can be encoded in single-byte
format due to its small contents. Thus, the complete machine instruction is:

Static Byte
! Memory ! Indexed ! RO ! EXTB !
Fm———————— Fommm e + +=+ +- +
1110101 1100!000!0!00!00101110!
ik e e e e B U S Pt S MUY NN SN ST S Sy
23 16 15 8 7 0
Static
! Memory ! R1 !
Index Byte (B): '11010!00 1!
: I ey
7 0
! 10 !
Fotm e +
Disp (A): 1010 00 101 0!
I ek s aerh ST S Sy |
7 0
! 0 !
Fo e ——————— +
Disp (B): 10!0 00 00O O!
e et o e e A
7 0
! 5 !
B +
"length" (disp): '10!0 00010 1!
ettt b |
7 0

The complete binary form of this instruction therefore appears in consecutive
memory bytes as '

2E 00 D7 D1 OA 00 05 (Hex).
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Chapter 5

SERIES 32000 INSTRUCTION SET

This chapter contains the detailed definitions of each of the instructions in the
Series 32000 instruction set.

Instructions are presented in the format shown in Figure 5-1. The items
indicated there are described below.

1.

Mnemonic index. Instructions are alphabetized according to this index,
which gives a general form of the mnemonic(s) for each instruction. For a
listing of instructions by functional groups, see instead Appendix A or
Chapter 3.

Enumerated mnemonics. This area holds a list of all wvalid mnemonic forms
for the instruction, if there are alternative forms.

Format definition. This area defines the assembly-language and binary
formats of the instruction, and the number and kinds of operands. The
information contained here is explained in Chapter 4.

Instruction description. The operation performed by the instruction is
defined here.

Flags Affected. All flags in the Processor Status Register which are
affected by the instruction are listed. See Section 2.2 for the general
definitions of these flags.

Traps. Any trap that may be caused by the instruction is 1listed. See
Chapter 6 for details of interrupt and trap service.

NOTE: Since the Abort trap, Trap (ABT), may occur on any instruction for

memory management purposes, it is not listed unless there is a cause
which is unique to that instruction.

Examples. One or more examples are given, where required, in order to
clarify the operation performed by the instruction. Conventions used in
presenting example instructions and operands are given in Section 5.1.



ADDQi
A4d Quick Integer

Syntax: ADDQi src, dest ADDOB
quick gen @—> ADDOW
rmw. i ADDQD

! dest ! src ! ADDQLI !
! gen !quick !00011!1il!
I e e e e aand Bt e g e e et
15 87 0_ |

The ADDQi instruction adds the src and dest operands and places the result in the
dest operand location. Before the addition is performed, src is sign—extended to
the length of dest.

Flags Affected: C is set on a carry from addition, cleared if no carry.

F is set on an overflow from addition, cleared if no overflow.
Integer carry and overflow conditions are defined in Sec. 3.1.

Traps: None]<—-@
Example:
ADDOB -8, RO 0C 04

The above example adds the quick integer -8 to the low-order byte of register RO.
The remaining bytes of RO are unaffected.

The action of the above instruction is illustrated below.

| | Operand Values: Hex (Dec) |

| oOperands | Before | After
-8 F8 * -
(quick) (-8)
RO AAAAAATS AAAAAATQ
(+120) (+112)
UPSR nzfxxltc nz0xx1tl

* This shows the internal format of the quick operand after
sign-extension to Byte length. The operand is encoded

within the instruction as binary 1000.

Figure 5-1: Typical Instruction Definition
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5.1 Instruction Examples

Figure 5-2 shows an instruction example from Section 5.2. Each example shows the
encodings and the actions of one or more typical forms of the instruction being
described.

5.1.1 Coding Examples

Example instructions are shown coded both in assembly-language source form and in
machine-language form.

The machine-language form is presented in hexadecimal as would be expected in a
"dump" format. The leftmost byte displayed occupies the lowest memory address.
The entire instruction is presented, including all extensions.

5.1.2 Action Examples
The actions of an example instruction are shown in three columns.

The "Operands" column identifies all operands of the instruction: both those
explicitly stated in assembly language and those which are implicitly affected by
"side~effects" (e.g. the PSR and SP registers where relevant). When a number is
presented it generally refers to an operand at that memory address, and is a
hexadecimal value. However, if the comment "(immediate)" or "(disp)" appears
below it, it is a literal value provided from within the instruction itself, and
is presented symbolically as in the assembly-language form of the instruction.
Its value appears in the "Before" column.

The "Before" and "After" columns present the values of operands before and after
execution of the example instruction. The radixes used in presenting these
values are listed in the column heading, as

"Hex" = Hexadecimal,

"Binary" = Binary,

"Boolean" = Boolean interpretation of the value (True or False), or

"Dec" = Decimal interpretation of the value. Where a value can be

interpreted as either signed or unsigned, and the distinction is
relevant to the action of the instruction, the terms "Signed"
and "Unsigned" are used.

NOTE: An immediate or displacement value is not considered to have an "After"
value, even though it never changes, because it is not available as an
immediate or displacement value to any subsequent instructions.



Assembly Machine
Language Language

Subtract with Carry| [Borrow] (continued)

SUBCi

Examples:
1
1. SUBCB 32, Rl 70 A0 20
2. SUBOW TOS, —8(FP) . 31 BE 78

Example 1 subtracts the sum of 32 and the C flag value from the low-order byte of
register Rl and places the result in the low—order byte of register Rl. The
remaining bytes of Rl are not affected.

Example 2 subtracts the sum of the word at the top of the stack and the C flag
value from the word at the memory address specified by -8(FP). The instruction
then places the two-byte result at the memory address specified as -8(FP).

The actions of the above instructions are illustrated below. The C flag value is
assumed to be 1.

Radixes
e
| Operand Values: Hex (Dec) | Used
|

|__Operands Before | After

Ex. 1: [ 32 20 —
(immediate) (+32)

Effects of Rl 00000050 0000002F
Example 1 (480) (+47)
| UPSR nzfxxltl nz0xx1t0

Ex., 2: -8(FP) CB99 9286

(-13415) (-28026)
Effects of UPSR nzfxx1tl nz0xx1t0

Example 2' Stacks

0000FFEE 3912 (+14610) xxxx *

0000FFFO0 . AAAA AAAA
SP 0000FFEE 0000FFF0

* The instruction has not itself changed the contents of these memory locations.
However, information that is outside the stack should be considered unpredict-
able for other reasons. See Section 2.7.1.

Figure 5-2: Typical Instruction Example
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5.1.3 Operand Presentation Format

The memory format convention used by the Series 32000 family places the least-
significant byte of a memory operand at the first (i.e. lowest) address. The
correct interpretation of a multiple-byte value in memory, therefore, is produced
by assembling consecutive bytes of the value from right to left. The address of
an operand in memory is also the address of its least-significant byte.

Operand values in examples are presented in units of bytes, words, double-words
or quad-words. Each unit is shown in the form corresponding to the interpreta-
tion of its contents, so that the least-significant digit of its least-
significant byte always appears as the rightmost digit.

Units appearing consecutively in memory are separated from each other either
horizontally (by a space) or vertically. Memory addresses of consecutive units
increase to the right and downward. The value given in the Operand column is the
address of the first unit (i.e. the address of its least-significant byte). For

example,
5000 1234 5678 9ABC and 5000 1234
5678
9ABC

both show three consecutive 16-bit words in memory starting with the value 1234
at address 5000. If the same memory information were presented as consecutive
bytes, it would appear as

5000 34 12 78 56 BC 9A .

Because an immediate or displacement value is encoded within the instruction
format with its most-significant byte at the lowest address (i.e. backward from
the ordering used elsewhere in memory), any such value is presented in the form
of consecutive bytes.

Hexadecimal and binary operand representations are always presented fully,
including any leading =zeroes, in order to define the length of each unit
unambiguously.

The character "x" means "don't care". Within a value in the Before column, any
field made up of these characters is ignored. Within a result in the After
column, these represent a field which may be changed unpredictably. In a binary
value, each "x" represents one don't care bit. In a hexadecimal value, each "x"
represents four bits, all of which are don't care bits.

Filler values of hexadecimal A...A, B...B or C...C are used in examples instead
of x...x whenever there is information which is ignored but also not changed.
Any decimal interpretation given with the operand ignores these fields. The
values 0...0 and F...F are never used as filler, as they occur very often within
the significant portion of an operand.



The Processor Status register (PSR) is presented in binary, in the form
XXXXIPSU/NZFXXLTC. In the Before column of an example, lower-case letters
(e.g. xxxxipsu/nzfxxltc) represent initially unknown values of the corresponding
bits. BAny bits appearing in the After column which still contain these lower-
case symbols have not been changed by the instruction being illustrated, with the
exception of all bits shown as "x", which are don't care bits as defined above.
Any bits which are changed by the instruction are shown in the After column with
their new values underlined. In situations where the most-significant half of
the PSR is never used or affected by an instruction, only the least-significant
half of the PSR is shown, labeled UPSR for "User PSR".
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5.2 Instruction Definitions

This section defines the individual Series 32000 instructions.
are ordered alphabetically by their general mnemonic form.

The instructions
For listings of

instructions by functional groups, see Appendix A. For help in interpreting the

information presented here, see the beginning of this chapter.



ABSE

Absolute Value Floating

Syntax: ABSE

src, dest ABSF
gen gen ABSL
read.f write.f

! src ! dest ! ABSE !

1 e o= 4

4+
T
!

4 4
hs T - T T
]

gen ! gen 1110101101111 10!

|ttt bt bm = Lo bt § e e bbb |

23

16 15 8 7 0

The ABSf instruction computes the absolute value of the src operand and places
the result in the dest operand location.

Flags Affected:

No PSR flags.

The FSR TT field is set to reflect any exceptional conditions
encountered in executing the instruction. If none is
encountered, TT is set to all zeroes. See Sections 2.4.2 and
3.3 for details of exceptional conditions and reporting.

Traps: Undefined Instruction Trap(UND) is activated if the F bit in
the CFG register is cleare.
Floating-Point Trap (FPU) is activated if a floating-point
exception is detected. See Section 3.3.
Example:
ABSF FO, F2 BE B5 00

This example computes the absolute value of the single-precision number in
register FO0 and places the result in register F2.

The instruction is illustrated below:

Operand Values: Hex (Dec)
Operands Before After
FO €2250000 C2250000
F2 AAARAAAAR 42250000
(+41.25)

O
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Absolute Value

Syntax: ABSi src, dest ABSB
gen gen ABSW
read.i write.i ABSD

! src ! dest ! ABSi !
o tmm—————— Fmm———— T ket L et +
! gen ! gen t1 100! i 0100117 10!
L i ks et el B B B e g P Sl e L e el e |
23 16 15 8 7 0

The ABSi instruction computes the absolute value of the src operand and places
the result in the dest operand location.

The absolute value of a positive number is the number itself. The absolute value
of a negative number is taken by subtracting it (as two's complement) from zero.

BEDRS

Flags Affected: F is set if an overflow from subtraction occurs, cleared
otherwise. An overflow condition will occur if the src operand
is the most negative number that can be represented in the
operand length specified by the programmer. For bytes, this

/\ value is -128 (Hex 80); for words it is =-32768 (Hex 8000) and

' ’ for double-words it is =-2,147,483,648 (Hex 80000000). These
values have no corresponding positive values in the same operand
length. The result produced on an overflow is the original src
operand value.

C is not affected.

Traps: None.
()
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ABSi
Absolute Value (continued)

Examples:
1. ABSB R5, R6 4E BO 29
2. ABSD 8(spP), R7 4E F3 C9 08

Example 1 computes the absolute value of the low-order byte of register R5 and
places the result in the low-order byte of register R6. The remaining bytes of
R6 are not affected.

Example 2 computes the absolute value of the double-word at the memory address
specified by 8(SP) and places the result in register R7.

These instructions are illustrated below:

Operand Values: Hex (Dec)

L_ Operands

Before After

Ex. 1: R5 AAAAAA13 AAAAAA13
(+19) (+19)

R6 BBBBBBBB BBBBBB13
) (+19)

UPSR nzfxxltc nz0xxltc

Ex. 2: 8(sP) FFFFFFFF FFFFFFFF
(=1) (-1)

R7 ARAAAAAA 00000001
(+1)

UPSR nzfxxltc nz0xxltc

@
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ACBi
Add, Compare and Branch

Syntax: ACBi inc, index, dest ACBB
quick gen disp ACBW
rmw. i ACBD

! dindex ! inc ! ACBi !

Fom———— + -+ Fm——t

! gen ! quick 11 00 1 1! i !

l=t=t=t=mt=tmtmt= | =ttt et fm = |

15 8 7 0

The ACBi instruction adds the inc value to the index operand (after sign- extend-
ing the 4-bit inc value to the length of index) and places the sum in the index
operand location. If the sum is not zero, the instruction branches to the loca-
tion specified as dest. If the sum is zero, the instruction ignores dest and
passes control to the next sequential instruction.

In the machine instruction, dest is specified as a displacement from the current
contents of the Program Counter; i.e., from the address of the first byte of this
instruction. Using the NSC Series 32000 assembler, this displacement may be
given explicitly in the form *+disp or *-disp, or dest may be specified as a
statement label or as any addressing expression that evaluates to an address
accessible via Program Counter Relative addressing. See the applicable assembler
manual for further information.

Flags Affected: None.

Traps: None.
Example:
- LOOP: MULD R2, RI1 CE 63 10
ACBB -1, RO, LOOP ccC 07 7D

In this example, the ACBB instruction adds -1 to the low-order byte of register
R0 and passes execution control to the MULD statement labeled LOOP as long as the
result is not zero. The combined instructions form an iterative loop.



ACBi

Add, Compare and Branch (continued)

The action of each execution of the above ACBB instruction is illustrated below.
Initial values for registers RO, R1,
respectively. Note that at the first execution of the ACBB instruction the first

MULD instruction has already been executed.

is assumed to be at address 9000 Hex,

at address 9003 Hex.

and R2 are assumed to be 3, 2, and 2,

The MULD instruction, labeled LOOP,
and the ACBB instruction is assumed to be

J Operand Values: Hex |
Operand . Before After I
1: PC 00009003 00009000 *
RO AAAAAAO3 AAAAAAO2
R1 00000004 00000004
R2 00000002 00000002
2: PC 00009003 00009000 *
RO AAAAARAOQ2 AAAAAAO1
R1 00000008 00000008
R2 00000002 00000002
3: PC 00009003 00009006 **
RO AAAAAAO1 AAAAAAOO
R1 00000010 00000010 ***
R2 00000002 00000002

* The disp operand value is assumed to be -3, encoded in one-byte displacement
format as 7D Hex. This is the difference between the statement labeled LOOP
and the ACBB instruction.

** The ACBB instruction is executed three times and returns control to the MULD
instruction at address 9000 twice. At the third execution, register RO
is decremented to zero so the instruction passes control to the next
sequential instruction at address 9006.

*** The final result of the MULD iterative loop is ((2*2)*2)*2 or 16 (=10 Hex).

O
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ADDf
Add Floating

Syntax: ADDE src, dest ADDF
gen gen ADDL
read.f rmw.f

! src ] dest ! ADDf !
+ + + R e +
! gen ! gen t0o 00O0O!MIf!T01T1T1T110!
I s s me et et sl B B P S o e e |
23 16 15 8 7 0

The ADDf instruction adds the src and dest operands and places the result in
the dest operand location. Results for normalized and =zero operands are given
in the table below. The symbols "m" and "n" represent any non-zero normalized
numbers. The symbols "+z" and "-z" represent positive zero and negative zero,

respectively.

dest: n +2z -z

src !

!
m !  m+n* m m

!
+2z ! n +z *

!
-2z ! n * -Z

* These cases, when the result is zero, select the result based on the current
rounding mode selected in the FSR. If the "Round toward Negative Infinity"
mode is selected, then the result returned is negative =zero. Otherwise, the
result returned is positive zero.

Flags Affected: No PSR flags. FSR flags are affected as follows:

UF is set if an underflow occurs; unaffected otherwise.
IF is set on an inexact result; unaffected otherwise.
TT field is set to reflect any exceptional conditions
encountered in executing the instruction. If none is
encountered, TT is set to all zeroes.

See Sections 2.4.2 and 3.3 for details of exceptional conditions

and reporting.

Traps: Undefined Instruction Trap (UND) is activated if the F bit in
the CFG register is clear.

Floating-Point Trap (FPU) is activated if a floating=-point
exception is detected. See Section 3.3.



ADDf
Add Floating (continued)

Examples:
1. ADDF FO, F7 BE C1 01
2. ADDL F2, 16(SB) BE 80 16 10

Example 1 adds the single-precision numbers in registers FO0 and F7 and places the
result in register F7.

Example 2 adds the double-precision numbers in register pair (F2,F3) and at the
address 16(SB) and places the double-precision result at address 16(SB).

Operand Values: Hex (Dec)

|
L

—

Operands Before [ After
Ex. 1: FO 40840000 40840000
(+4.125) (+4.125)
F7 41D40000 41F50000
(+26.5) (+30.625)
Ex. 2: (F2,F3) 41C0200888300000 41Cc0200888300000
(+541069584.375) (+541069584.375)
16 (SB) 4114Cc86300000000 41C022A194900000
(+340504.75) (+541410089. 125)

)
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ADDi

Add

Syntax: ADDi src, dest ADDB
gen gen ADDW
read.i rmw.i ADDD

! src ! dest ! ADDi !
+ + ———tm F———t
! gen ! gen 10 00 0! i !
L e e s kLt ml SR S S S S |
15 8 7 0

The ADDi instruction adds the src and dest operands and places the sum in the
dest operand location.

Flags Affected:

Traps:

C is set on a carry from addition, cleared if no carry.

F is set on an overflow from addition, cleared if no overflow.

Integer carry
Section 3.1

None.

and

overflow

conditions

are

defined

in



ADDi
Add (continued)

Examples:
1. ADDB RO, RI1 40 00
2. ADDD 4(SB), —4(FP) 03 D6 04 7C

Example 1 adds the low-order byte of register RO to the low=-order byte of
register R1 and places the result in the low-order byte of register R1. The
remaining bytes of R1 are not affected.

Example 2 adds double-words. 4(SB) and -4(FP) specify the operand addresses.
The instruction places the double-word sum in memory at the address specified by

|
L_ Operands l

Operand Values: Hex (Dec)

Before | After
Ex. 1: RO AAAAAAOF AAAAAASF
(-97) (-97)
R1 BBBBBB62 BBBBBBO0 1
(+98) (+1)
UPSR nzfxxltc nz0xx1lt1l
EX. 2: 4(SB) 20401110 20401110
(+541069584) (+541069584)
-4 (FP) 0334A001 2374B111
(+53780481) (+594850065)
UPSR nzfxxltc nz0xx1t0

®
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ADDCi
(/\\ Add with Carry

Syntax: ADDCi src, dest ADDCB
gen gen ADDCW
read.i rmw.i ADDCD

! src ! dest ! ADDCi !
+== + + =t
! gen ! gen 10 100! 1!
| —tmtmtet ettt et= | et b |
15 8 7 0

The ADDCi instruction adds the src operand, dest operand, and the C flag and
places the sum in the dest operand location.

Flags Affected: C is set on a carry from addition, cleared if no carry.
F is set on an overflow from addition, cleared if no overflow.

Integer carry and overflow conditions are defined in
Section 3.1.

) D)

Traps: None.
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ADDCi
Add with Carry (continued)

Examples:
1. ADDCB 32, RO 10 A0 20
2. ADDCD 8(SB), RO 13 DO 08

Example 1 adds 32, the low-order byte of register RO, and the C flag contents and
places the result in the low-order byte of register RO. The remaining bytes of
register RO are unaffected.

Example 2 adds the double-word at the address specified by 8(SB), the contents of
the register RO, and the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>